Identification of carotid plaque tissue properties using an experimental-numerical approach.

J Mech Behav Biomed Mater

Department of Solid Mechanics, Royal Institute of Technology (KTH), Teknikringen 8, 100 44 Stockholm, Sweden.

Published: November 2013

A biomechanical stress analysis could help to identify carotid plaques that are vulnerable to rupture, and hence reduce the risk of thrombotic strokes. Mechanical stress predictions critically depend on the plaque's constitutive properties, and the present study introduces a concept to derive viscoelastic parameters through an experimental-numerical approach. Carotid plaques were harvested from two patients during carotid endarterectomy (CEA), and, in total, nine test specimens were investigated. A novel in-vitro mechanical testing protocol, which allows for dynamic testing, keeping the carotid plaque components together, was introduced. Macroscopic pictures overlaid by histological stains allowed for the segmentation of plaque tissues, in order to develop high-fidelity and low-fidelity Finite Element Method (FEM) models of the test specimens. The FEM models together with load-displacement data from the mechanical testing were used to extract constitutive parameters through inverse parameter estimation. The applied inverse parameter estimation runs in stages, first addressing the hyperelastic parameters then the viscoelastic ones. Load-displacement curves from the mechanical testing showed strain stiffening and viscoelasticity, as is expected for both normal and diseased carotid tissue. The estimated constitutive properties of plaque tissue were comparable to previously reported studies. Due to the highly non-linear elasticity of vascular tissue, the applied parameter estimation approach is, as with many similar approaches, sensitive to the initial guess of the parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2013.05.001DOI Listing

Publication Analysis

Top Keywords

mechanical testing
12
parameter estimation
12
carotid plaque
8
plaque tissue
8
experimental-numerical approach
8
carotid plaques
8
constitutive properties
8
test specimens
8
fem models
8
inverse parameter
8

Similar Publications

: Accurate reconstruction of internal temperature fields from surface temperature data is critical for applications such as non-invasive thermal imaging, particularly in scenarios involving small temperature gradients, like those in the human body. : In this study, we employed 3D convolutional neural networks (CNNs) to predict internal temperature fields. The network's performance was evaluated under both ideal and non-ideal conditions, incorporating noise and background temperature variations.

View Article and Find Full Text PDF

Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment.

View Article and Find Full Text PDF

Enhanced Performance and Durability of Pore-Filling Membranes for Anion Exchange Membrane Water Electrolysis.

Membranes (Basel)

December 2024

Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.

Four distinct pore-filling anion exchange membranes (PFAEMs) were prepared, and their mechanical properties, ion conductivity, and performance in anion exchange membrane water electrolysis (AEMWE) were evaluated. The fabricated PFAEMs demonstrated exceptional tensile strength, which was approximately 14 times higher than that of the commercial membrane, despite being nearly half as thin. Ion conductivity measurements revealed that acrylamide-based membranes outperformed benzyl-based ones, exhibiting 25% and 41% higher conductivity when using crosslinkers with two and three crosslinking sites, respectively.

View Article and Find Full Text PDF

Epoxy resin (EP) is an outstanding polymer material known for its low cost, ease of preparation, excellent electrical insulation properties, mechanical strength, and chemical stability. It is widely used in high- and ultra-high-voltage power transmission and transformation equipment. However, as voltage levels continue to increase, EP materials are gradually failing to meet the performance demands of operational environments.

View Article and Find Full Text PDF

The Impact of Laser Irradiation on Thin ZrN Films Deposited by Pulsed DC Magnetron Sputtering.

Nanomaterials (Basel)

December 2024

School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Transition metal nitrides have extensive applications, including magnetic storage devices, hardware resistance coatings, and low-temperature fuel cells. This study investigated the structural, electrical, and mechanical properties of thin zirconium nitride (ZrN) films by examining the effects of laser irradiation times. Thin ZrN films were deposited on glass substrates using pulsed DC magnetron sputtering and irradiated with a diode laser for 6 and 10 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!