Dynamic structural changes in microbial membranes in response to high hydrostatic pressure analyzed using time-resolved fluorescence anisotropy measurement.

Biophys Chem

Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan; Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan. Electronic address:

Published: December 2013

High hydrostatic pressure has a profound physiological impact on lipid membranes, primarily resulting in tighter packing and restriction of acyl-chain motion. To fulfill membrane protein functions in high-pressure environments, deep-sea organisms possess specialized cell membranes. Although the effects of high-pressure on model membranes have been investigated in great detail, high-pressure-induced structural changes in living cell membranes remain to be elucidated. Of the spectroscopic techniques available to date, fluorescence anisotropy measurement is a common useful method that provides information on dynamic membrane properties. This mini-review focuses on pressure-induced changes in natural cell membranes, analyzed by means of high-pressure time-resolved fluorescence anisotropy measurement (HP-TRFAM). Specifically, the role of eicosapentaenoic acid in deep-sea piezophiles is described in terms of the structural integrity of the membrane under high pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2013.05.005DOI Listing

Publication Analysis

Top Keywords

fluorescence anisotropy
12
anisotropy measurement
12
cell membranes
12
structural changes
8
high hydrostatic
8
hydrostatic pressure
8
time-resolved fluorescence
8
membranes
6
dynamic structural
4
changes microbial
4

Similar Publications

Visible-light absorbing metal-free organic dyes are of increasing demand for various optoelectronic applications because of their great structure-function tunability through chemical means. Several dyes also show huge potential in triplet photosensitization, generating reactive singlet oxygen. Understanding the structure-property relationships of many well-known fluorescein dyes is of paramount importance in designing next-generation energy efficient dyes, which is currently limited.

View Article and Find Full Text PDF

Ezrin Polarization as a Diagnostic Marker for Circulating Tumor Cells in Hepatocellular Carcinoma.

Cells

December 2024

Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer-related death worldwide, with no precise method for early detection. Circulating tumor cells (CTCs) expressing the dynamic polarity of the cytoskeletal membrane protein, ezrin, have been proposed to play a crucial role in tumor progression and metastasis. This study investigated the diagnostic and prognostic potential of polarized circulating tumor cells (p-CTCs) in HCC patients.

View Article and Find Full Text PDF

Much can be learned about molecular aggregates by modeling their fluorescence-type spectra. In this study, we systematically describe the accuracy of various methods for simulating fluorescence-type linear spectra in a dimer system with a complex system-environment interaction, which serves as a model for various molecular aggregates, including most photosynthetic light-harvesting complexes (LHCs). We consider the approximate full cumulant expansion (FCE), complex time-dependent Redfield (ctR), time-independent Redfield, and modified Redfield methods and calculate their accuracy as a function of the site energy gap and coupling, excitonic energy gap, and dipole factor (i.

View Article and Find Full Text PDF

We have previously found that the presence of an H-type excitonic dimer formed by two fluorophores covalently bound to an oligonucleotide allows the delivery of such a polymer into live cells without inducing toxicity. We are now using time-resolved fluorescence measurements in solution to understand the molecular dynamics of an antisense probe and how pairing with complementary sense strands of various lengths and degrees of complementarity affects the antisense strand's properties. We report that a DNA strand composed of 30 residues and labeled with an H-type excitonic Cyanine-5/Cyanine-5 dimer shows a predominant 1.

View Article and Find Full Text PDF

Detection and Quantification of DNA by Fluorophore-Induced Plasmonic Current: A Novel Sensing Approach.

Sensors (Basel)

December 2024

Department of Chemistry and Biochemistry, Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, MD 21202, USA.

We report on the detection and quantification of aqueous DNA by a fluorophore-induced plasmonic current (FIPC) sensing method. FIPC is a mechanism described by our group in the literature where a fluorophore in close proximity to a plasmonically active metal nanoparticle film (MNF) is able to couple with it, when in an excited state. This coupling produces enhanced fluorescent intensity from the fluorophore-MNF complex, and if conditions are met, a current is generated in the film that is intrinsically linked to the properties of the fluorophore in the complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!