Introduction: Rheumatoid arthritis (RA) is a systemic disease and the most prevalent of all autoimmune disorders. Here we review recent advances in the development and availability of biologic agents with a focus on monoclonal antibody or smaller formats of targeted engineered therapeutics including novel, non-antibody-based therapeutics.
Areas Covered: Today an array of biologics blocking either proinflammatory cytokines or lymphocyte activation/survival are available that enable a substantial improvement over conventional disease-modifying antirheumatic drugs (DMARDs). We review the engineering process of antibody-based biologics, their preclinical and clinical application, and current efforts to treat RA by interfering with B-cell function (notable targets covered are CD20, CD38, B-cell activating factor, transmembrane activator and calcium-modulating and cyclophilin interactor), with T-cell function (CD3, CD4, CD28), with bone erosion (RANKL), and with cytokines or growth factors (tumor necrosis factor, interleukin-1 [IL-1], IL-6, IL-17, VEGF). Future treatment choices might encompass the blockade or modulation of danger-associated molecular patterns such as HMGB1, pattern recognition receptors, messenger RNAs or noncoding RNAs, histone acetylation, and inflammasome components.
Expert Opinion: Although current therapies can reduce the signs and symptoms of RA for many patients, the quest for a cure (or a more complete blockade of the structural damage) in RA is still ongoing and will need treatment approaches, which are not exclusively confined to blocking a particular cytokine, receptor, or autoreactive B or T cell involved in disease progression. To this end exciting treatment alternatives and drug targets are on the horizon that may become available to patients in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/14712598.2013.811230 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!