The impact of extended maceration (EM) was studied in Cabernet Sauvignon grapes sourced from a vineyard subjected to four regulated deficit irrigation (RDI) treatments: (I) 100% replenishment of crop evapotranspiration (100% ETc), (II) 70% ETc, (III) 25% ETc until véraison, followed by 100% ETc until harvest, and IV) 25% ETc. Each vineyard replicate was made into wine with two replicates designated as controls (10-day skin contact) and two as extended maceration (EM, 30-day skin contact). The mean degree of polymerization (mDP), size distribution, concentration, and composition of wine proanthocyanidins (PAs) and monomeric flavan-3-ols of 90 fractions were characterized by preparative and analytical HPLC techniques. The maceration length imparted a larger effect on most chemical parameters. The RDI treatment had no effect on the extraction patterns of anthocyanins, PAs, and/or on the origin of the PAs extracted into the wines. Conversely, EM led to anthocyanin losses and increased PA extraction during maceration, with ~73% of seed-derived PAs. Accordingly, the concentration of monomeric flavan-3-ols, oligomeric (2 ≤ mDP < 5) and polymeric PAs (mDP ≥ 5) was higher in EM wines. The size distribution of the wines' PAs revealed two major peaks as a function of concentration at mDP 2 (22-27% of total PAs mass) and at mDP 6-7 (12-17% of total PAs mass) and was found to follow a non-normal Rayleigh-type distribution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf400733u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!