Murine mPGES-1 3D structure elucidation and inhibitors binding mode predictions by homology modeling and site-directed mutagenesis.

J Chem Inf Model

R&D, In vitro Pharmacology Dev., Angelini Research Center, ACRAF S.p.A. P.le della Stazione, Snc, I-00040 Santa Palomba, Pomezia-RM, Italy.

Published: July 2013

AI Article Synopsis

  • mPGES-1 is a key enzyme that converts PGH₂ to PGE₂ and is linked to inflammation-related diseases, making it a target for anti-inflammatory drugs.
  • Although several compounds have been developed to target human mPGES-1, they lack specificity and show little activity against mouse mPGES-1, complicating preclinical studies.
  • This research aims to identify the binding modes of murine mPGES-1 through modeling and mutagenesis, comparing it to human mPGES-1 to aid in the design of more effective inhibitors for both species.

Article Abstract

Microsomal prostaglandin E synthase-1 (mPGES-1) constitutes an inducible glutathione-dependent integral membrane protein that catalyzes the oxido-reduction of cyclooxygenase derived PGH₂ into PGE₂. mPGES-1 is an essential enzyme involved in a variety of human diseases or pathological conditions, such as rheumatoid arthritis, fever, and pain; it is therefore regarded as a primary target for development of next-generation anti-inflammatory drugs. Several compounds targeting human mPGES-1 have been reported in the literature. However, none of them is really specific for mPGES-1, and quite surprisingly, all of these compounds have very low or no activity against murine mPGES-1, making preclinical development hard and very expensive. In order to overcome this unresolved question, the current study focuses on the elucidation of the molecular determinants of murine mPGES-1 ligand binding modes combining protein homology modeling and site-directed mutagenesis approaches. We have developed, for the first time, two murine mPGES-1 models, describing both the closed and the open/active conformation of the enzyme. The 3D structure of human mPGES-1 having been recently disclosed, the main differences between the human and the murine enzyme models are described, emphasizing the smaller dimensions of the rodent substrate binding site, which could account for different activity of a ligand toward the two species. Furthermore, active binding modes are hypothesized, highlighting the most likely important residues for inhibition activity, whose identification is supported by in-house mutagenesis experiments. The results of our work could provide grounds for a rational structure-based drug design aimed to identify new inhibitors active against both human and murine mPGES-1.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci400180fDOI Listing

Publication Analysis

Top Keywords

murine mpges-1
20
mpges-1
9
homology modeling
8
modeling site-directed
8
site-directed mutagenesis
8
human mpges-1
8
binding modes
8
human murine
8
murine
6
human
5

Similar Publications

Microsomal prostaglandin E synthase-1 (mPGES-1) is an isozyme of the prostaglandin (PG) E synthase that acts downstream of cyclooxygenase and catalyzes the conversion of PGH to PGE. The impact of genetic deletion of mPGES-1 on the development of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, a well-established model of inflammatory bowel disease (IBD), was investigated in this study. After administration of TNBS, mice deficient in mPGES-1 (mPGES-1 mice) showed more severe colitis than did wild-type (WT) mice.

View Article and Find Full Text PDF

Recently, there has been significant exploration into the utilization of food by-products as natural reservoirs of bioactive substances, particularly in the creation of functional foods naturally enriched with antioxidants. peels represent a viable option for formulating enhanced olive oils that contribute to a healthier diet, due to their bioactive compound content. This study aimed to (i) ascertain the compositional characteristics of olive oil (CrOO) and (ii) assess its nutraceutical properties in rats with metabolic disorder induced by 3 weeks of feeding with a high-fat diet (HFD).

View Article and Find Full Text PDF

Roles of Toll-like Receptor Signaling in Inflammatory Bone Resorption.

Biology (Basel)

September 2024

Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan.

Toll-like receptors (TLRs) are pattern recognition receptors expressed in immune cells, including neutrophils, macrophages, and dendritic cells. Microbe-associated molecular patterns, including bacterial components, membranes, nucleic acids, and flagella are recognized by TLRs in inflammatory immune responses. Periodontal disease is an inflammatory disease known to cause local infections associated with gingival inflammation, subsequently leading to alveolar bone resorption.

View Article and Find Full Text PDF

The present study aimed to investigate the effects of ()-(-)-1-isothiocyanato-6-(methylsulfinyl)-hexane [()-6-HITC], the major isothiocyanate present in wasabi, in an model of inflammation using lipopolysaccharide-stimulated murine peritoneal macrophages. ()-6-HITC improved the immune response and mitigated oxidative stress, which involved suppression of reactive oxygen species, nitric oxide, and pro-inflammatory cytokines (IL-1β, IL-6, IL-17, IL-18, and TNF-α) production and downregulation of pro-inflammatory enzymes such as inducible nitric oxide synthase, COX-2, and mPGES-1. In addition, ()-6-HITC was able to activate the Nrf2/HO-1 axis while simultaneously inhibiting key signaling pathways, including JAK2/STAT3, mitogen-activated protein kinases, and canonical and noncanonical inflammasome pathways, orchestrating its potent immunomodulatory effects.

View Article and Find Full Text PDF
Article Synopsis
  • Tumor cell-derived prostaglandin E2 (PGE2) promotes immunosuppression in the tumor microenvironment by influencing immune cells, but its specific role in tumor cells remains unexplored.
  • Deleting the PGE2 synthesis enzyme or blocking its receptor (EP4) in pancreatic cancer cells activates T cells, changes the immune environment, and inhibits tumor growth.
  • Combining EP4 receptor blockade with immunotherapy leads to complete tumor regressions and enhances immune memory, highlighting the importance of targeting the PGE2 signaling pathway for potential cancer treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!