Dibenzyl and diallyl 2,6-bisiminopyridinezinc(II) complexes: selective alkyl migration to the pyridine ring leads to remarkably stable dihydropyridinates.

Chem Commun (Camb)

Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, c/Americo Vespucio 49, 41092, Sevilla, Spain.

Published: August 2013

AI Article Synopsis

Article Abstract

Diorganozinc compounds (ZnR2) with R = CH2Ph or CH2CH=CH2 react with 2,6-bisiminopyridines ((iPr)BIP) to afford thermally stable dihydropyridinate(-1) complexes, and do not react if R = CH2SiMe3 or CH2CMe2Ph. NMR studies reveal that dibenzylzinc binds (iPr)BIP at -80 °C, yielding the unstable complex [Zn(CH2Ph)2((iPr)BIP)]. Above -20 °C, this undergoes selective alkyl migration to the remote 4 position of the central pyridine ring.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc42798fDOI Listing

Publication Analysis

Top Keywords

selective alkyl
8
alkyl migration
8
pyridine ring
8
dibenzyl diallyl
4
diallyl 26-bisiminopyridinezincii
4
26-bisiminopyridinezincii complexes
4
complexes selective
4
migration pyridine
4
ring leads
4
leads remarkably
4

Similar Publications

Photoredox-Enabled Direct and Three-Component Difluoroalkylative Modification of -Aryl Glycinates.

Org Lett

January 2025

Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China.

A Cu(I) photoredox-enabled reaction that selectively incorporates a difluoroalkyl group into -aryl glycine derivatives has been established. Using a bench-stable [PhPCFH]Br salt, the -CFH group could be installed either directly on the α-carbon of the glycine backbone or in a three-component fashion using an alkene as a bridge. A series of glycine derivatives have been evaluated, providing access to diverse unnatural amino esters and dipeptides with a -CHF unit.

View Article and Find Full Text PDF

Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.

View Article and Find Full Text PDF

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

Herein we report a cobalt-catalyzed hydroglycosylation of terminal alkynes, employing bench-stable ortho-iodobiphenyl (oIB) substituted sulfides as glycosyl donors. This reaction occurs with high stereo- and regioselectivity to afford E-configured vinyl α-C-glycosides, a class of compounds nontrivial to access by previous methods. The use of a bis(oxazoline) ligand with bulky side chains is critical for the high selectivities observed.

View Article and Find Full Text PDF

Resorcinol-based Bolaamphiphilic Quaternary Ammonium Compounds.

ChemMedChem

January 2025

Villanova University, Chemistry, 800 E Lancaster Ave, 19085, Villanova, UNITED STATES OF AMERICA.

Quaternary ammonium compounds (QACs) play crucial disinfectant roles in healthcare, industry, and domestic settings. Most commercially utilized QACs like benzalkonium chloride have a common architectural theme, leading to a rise in bacterial resistance and urgent need for novel structural classes. Some potent QACs such as chlorhexidine (CHX) and octenidine (OCT) feature a bolaamphiphilic architecture, comprised of two cationic centers at the molecular periphery and a non-polar region connecting them; these compounds show promise to elude bacterial resistance mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!