Two new molecules, CzFCBI and CzFNBI, have been tailor-made to serve as bipolar host materials to realize high-efficiency electrophosphorescent devices. The molecular design is configured with carbazole as the hole-transporting block and N-phenylbenzimidazole as the electron-transporting block hybridized through the saturated bridge center (C9) and meta-conjugation site (C3) of fluorene, respectively. With structural topology tuning of the connecting manner between N-phenylbenzimidazole and the fluorene core, the resulting physical properties can be subtly modulated. Bipolar host CzFCBI with a C connectivity between phenylbenzimidazole and the fluorene bridge exhibited extended π conjugation; therefore, a low triplet energy of 2.52 eV was observed, which is insufficient to confine blue phosphorescence. However, the monochromatic devices indicate that the matched energy-level alignment allows CzFCBI to outperform its N-connected counterpart CzFNBI while employing other long-wavelength-emitting phosphorescent guests. In contrast, the high triplet energy (2.72 eV) of CzFNBI imparted by the N connectivity ensures its utilization as a universal bipolar host for blue-to-red phosphors. With a common device configuration, CzFNBI has been utilized to achieve highly efficient and low-roll-off devices with external quantum efficiency as high as 14 % blue, 17.8 % green, 16.6 % yellowish-green, 19.5 % yellow, and 18.6 % red. In addition, by combining yellowish-green with a sky-blue emitter and a red emitter, a CzFNBI-hosted single-emitting-layer all-phosphor three-color-based white electrophosphorescent device was successfully achieved with high efficiencies (18.4 %, 36.3 cd A(-1) , 28.3 lm W(-1) ) and highly stable chromaticity (CIE x=0.43-0.46 and CIE y=0.43) at an applied voltage of 8 to 12 V, and a high color-rendering index of 91.6.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201300738 | DOI Listing |
Front Cell Neurosci
January 2025
Reserach Unit "Drosophila"UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia.
Background: The human gut mycobiome, a minor but integral component of the gut microbiome, has emerged as a significant player in host homeostasis and disease development. While bacteria have traditionally been the focus of gut microbiome studies, recent evidence suggests that fungal communities (mycobiota) may also play a crucial role in modulating health, particularly in neuropsychiatric disorders.
Objective: This review aims to provide a comprehensive overview of current knowledge on the relationship between the gut mycobiome and neuropsychiatric disorders, exploring the potential of targeting fungal communities as a novel therapeutic strategy.
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
Crystalline organic semiconductors, recognized for their highly ordered structures and high carrier mobility, have emerged as a focal point in the field of high-performance optoelectronic devices. Nevertheless, the intrinsic unipolar properties, characterized by imbalanced hole and electron transport capabilities, have continuously represented a significant challenge in the advancement of high-performance crystalline thin-film organic light-emitting diodes (C-OLEDs). Here, a bipolar solid-solution thin film with a maintained crystal structure has been fabricated using 2-(4-(9H-carbazol-9-yl)phenyl)-1(3,5-difluorophenyl)-1H-phenanthro [9,10-d]imidazole (2FPPICz) and 4-(1-(3,5-difluorophenyl)-1H-imidazo[4,5-][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline (2Fn) via a weak epitaxial growth (WEG) process, exhibiting nearly equivalent hole and electron mobilities (10-10 cm V s).
View Article and Find Full Text PDFStem Cell Reports
January 2025
Research Center, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan. Electronic address:
We have previously shown that the transplantation of stem cell-derived retinal organoid (RO) sheets into animal models of end-stage retinal degeneration can lead to host-graft synaptic connectivity and restoration of vision, which was further improved using genome-edited Islet1 ROs (gROs) with a reduced number of ON-bipolar cells. However, the details of visual function restoration using this regenerative therapeutic approach have not yet been characterized. Here, we evaluated the electrophysiological properties of end-stage rd1 retinas after transplantation (TP-rd1) and compared them with those of wild-type (WT) retinas using multi-electrode arrays.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, China.
The further success of OLED beyond conventional low-luminance display applications has been hampered by the low power efficiency (PE) at high luminance. Here, we demonstrate the strategic implementation of an exceptionally high-PE, high-luminance OLED using a phosphor-assisted thermally-activated-delayed-fluorescence (TADF)-sensitized narrowband emission. On the basis of a TADF sensitizing-host possessing a fast reverse intersystem crossing, an anti-aggregation-caused-quenching character and a good bipolar charge-transporting ability, this design achieves not only a 100% exciton radiative consumption with decay times mainly in the sub-microsecond regime to mitigate exciton annihilations for nearly roll-off-free external quantum efficiency, but also narrowband emission with both small energetic loss during energy transfer and resistive loss with increasing luminance.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
Kirov Military Medical Academy, St. Petersburg, Russia.
The gut microbiota is a community of microorganisms that live in the digestive tract of living beings and form bidirectional symbiotic relationships with them. It is known that gut bacteria play an important role in maintaining the functioning of the host organism, and disruption in the normal composition of the gut microbiota can contribute to the development of many diseases. The study of microbiota has been gaining popularity in recent years, and its influence on the course of various pathological conditions is becoming more and more undeniable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!