The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1073858413491145 | DOI Listing |
ACS Nano
December 2024
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
Half-metallic magnetism, characterized by metallic behavior in one spin direction and semiconducting or insulating behavior in the opposite spin direction, is an intriguing and highly useful physical property for advanced spintronics because it allows for the complete realization of 100% spin-polarized current. Particularly, half-metallic antiferromagnetism is recognized as an excellent candidate for the development of highly efficient spintronic devices due to its zero net magnetic moment combined with 100% spin polarization, which results in lower energy losses and eliminates stray magnetic fields compared to half-metallic ferromagnets. However, the synthesis and characterization of half-metallic antiferromagnets have not been reported until now as the theoretically proposed materials require a delicate and challenging approach to fabricate such complex compounds.
View Article and Find Full Text PDFSci Rep
December 2024
Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, India.
Antiferromagnetic materials offer potential for spintronic applications due to their resilience to magnetic field perturbations and lack of stray fields. Achieving exchange bias in these materials is crucial for certain applications; however, discovering such materials remains challenging due to their compensated spin structure. The quest for antiferromagnetic materials with exchange bias became a reality through our experimental study and theoretical simulation on and .
View Article and Find Full Text PDFSci Rep
December 2024
School of Physics, IISER Thiruvananthapuram, Vithura, Kerala, 695551, India.
This work reports magnetic field direction dependent second magnetisation peak (SMP) anomaly in single crystals of oxygenated [Formula: see text] for [Formula: see text] ab. Detailed investigations on crystal A revealed the direction dependence of SMP anomaly at temperatures below 25 K, above which the direction dependence vanishes. The state of spatial order of the vortex lattice was found to be correlated to the vortex lattice symmetry that underwent a change at certain fields and was captured via single flux jumps observed in the third and fifth quadrant of magnetisation hysteresis loops.
View Article and Find Full Text PDFRedox Biol
December 2024
Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland.
The increase in early-stage cancers, particularly gastrointestinal, breast and kidney cancers, has been linked to lifestyle changes such as consumption of processed foods and physical inactivity, which contribute to obesity and diabetes - major cancer risk factors. Conventional treatments such as chemotherapy and radiation often lead to severe long-term side effects, including secondary cancers and tissue damage, highlighting the need for new, safer and more effective therapies, especially for young patients. Weak electromagnetic fields (WEMF) offer a promising non-invasive approach to cancer treatment.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Physics, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland.
The number of submarine cables in marine environment is increasing. Thus, marine organisms, especially benthic invertebrates are exposed to magnetic fields generated by those cables. The aim of the study was to determine the effect of static magnetic field (SMF) and electromagnetic field (EMF) on the behaviour and physiology of Rhithropanopeus harrisii during a series of laboratory experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!