Manganese porphyrins have been extensively investigated as model systems for the natural enzyme cytochrome P450 and as synthetic oxidation catalysts. Here, we report single-molecule studies of the multistep reaction of manganese porphyrins with molecular oxygen at a solid/liquid interface, using a scanning tunnelling microscope (STM) under environmental control. The high lateral resolution of the STM, in combination with its sensitivity to subtle differences in the electronic properties of molecules, allowed the detection of at least four distinct reaction species. Real-space and real-time imaging of reaction dynamics enabled the observation of active sites, immobile on the experimental timescale. Conversions between the different species could be tuned by the composition of the atmosphere (argon, air or oxygen) and the surface bias voltage. By means of extensive comparison of the results to those obtained by analogous solution-based chemistry, we assigned the observed species to the starting compound, reaction intermediates and products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nchem.1667 | DOI Listing |
Antioxidants (Basel)
November 2024
Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
Reactive oxygen species (ROS) are double-edged swords in biological systems-they are essential for normal cellular functions but can cause damage when accumulated due to oxidative stress. Manganese superoxide dismutase (MnSOD), located in the mitochondrial matrix, is a key enzyme that neutralizes superoxide radicals (O), maintaining cellular redox balance and integrity. This review examines the development and therapeutic potential of MnSOD mimetics-synthetic compounds designed to replicate MnSOD's antioxidant activity.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.
The endogenous reduction of nitrite to nitrosyl is drawing increasing attention as a protective mechanism against hypoxic injury in mammalian physiology and as an alternative source of NO, which is involved in a wide variety of biological activities. Thus, chemical mechanisms for this transformation, which are mediated by metallo proteins, are of considerable interest. The study described here examines the reactions of the biomimetic models Co(TTP)(NO) (TTP = meso-tetratolylporphyrinato dianion) and Mn(TPP)(ONO) (TPP = meso-tetraphenyl-porphyrinato dianion) in sublimated solid films with hydrogen sulfide (HS) and with ethanethiol (EtSH) at various temperatures from 77 K to room temperature using in situ infrared and optical spectroscopy.
View Article and Find Full Text PDFTalanta
December 2024
State Key Laboratory of Natural Medicines, China Pharmaceutical University, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:
A manganese porphyrin wrapped DNA dendrimer (Mn-DD) was developed through enzyme-free DNA self-assembly and simple and mild groove binding of porphyrin. The Mn-DD not only possessed plenty of manganese porphyrin to amplify the chemiluminescence (CL) signal, but also can be modified with diverse groups via DNA hybridization. Combined with an immunosensor array, Mn-DD can be utilized for CL immunoassay of multiple mycotoxins as a universal tag.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China.
Mitochondrial dysfunction, which is the primary mechanism underlying cisplatin-induced hearing loss, can potentially be mitigated by modulating the redox balance and reprogramming the energy metabolism to remodel mitochondrial homeostasis. Herein, N-acetyl-l-cysteine-derived carbonized polymer dots (NAC CPDs) are embedded into manganese porphyrin-doped metal-organic frameworks and encapsulated using a polydopamine (PDA) coating and gelatin methacryloyl (GelMA) hydrogel to afford functionalized nanozyme microcapsules. Owing to their injectability and adhesion properties, these microcapsules exhibit the advantages of prolonged retention in the middle ear and sustained release in the inner ear.
View Article and Find Full Text PDFZhejiang Da Xue Xue Bao Yi Xue Ban
November 2024
School of Medicine, Hangzhou City University, Hangzhou 310015, China.
Neurodegenerative disorders are a group of diseases caused by the degeneration and apoptosis of neurons in the brain and spinal cord, which seriously affect human ability of motion perception, memory and cognition. Peroxynitrite can cause oxidative damage in the brain exhibiting neurotoxicity, and its excussive accumulation is closely related to neurodegenerative diseases. Therefore, effectively scavenging peroxynitrite may become a therapeutic strategy for neurodegenerative diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!