Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201203383DOI Listing

Publication Analysis

Top Keywords

supramolecular attachment
4
attachment metalloporphyrins
4
metalloporphyrins graphene
4
graphene oxide
4
oxide pyridine-containing
4
pyridine-containing derivative
4
supramolecular
1
metalloporphyrins
1
graphene
1
oxide
1

Similar Publications

Using photoswitchable molecules to manipulate supramolecular interactions under light illumination has driven advancements in numerous fields, allowing for the strategic alteration of molecular systems. However, integrating the moiety responsible for these interactions into the photochromic scaffold can be complex and may hamper the switching efficiency. We thus explored a simple class of organic molecules, namely thiosemicarbazones, featuring both a photoisomerizable C[double bond, length as m-dash]N double bond and a thiourea moiety capable of hydrogen bonding.

View Article and Find Full Text PDF

Development of a StIW111C-based bioresponsive pore-forming conjugate for permeabilizing the endosomal membrane.

Int J Biol Macromol

January 2025

Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:

Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.

View Article and Find Full Text PDF

Poly(2-Hydroxymethyl-2-Oxazoline) as Super-Hydrophilic Antifouling Polymer.

Angew Chem Int Ed Engl

December 2024

Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium.

Non-ionic "super-hydrophilic" polymers generally possess strong non-fouling characteristics and, therefore, can suppress non-specific and unwanted interactions with blood proteins when attached to in vivo nanomedicine ranging from drug or gene delivery to diagnostics. In this contribution, we revitalize a protected alcohol functionalized 2-oxazoline monomer, 2-acetoxymethyl-2-oxazoline, that was first reported almost fifty-five years ago and explore the possibility of making "super-hydrophilic" poly(2-oxazoline)s for biomedical applications. The synthesis of the 2-acetoxymethyl-2-oxazoline monomer and its cationic ring-opening homopolymerization and copolymerization kinetics are reported.

View Article and Find Full Text PDF

Biomimetic biomass-based composite carbon aerogels with excellent mechanical performance for energy storage and pressure sensing in extreme environments.

J Colloid Interface Sci

December 2024

Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China; Shandong Tonye Photoresist Material Technology CO., LTD, Weifang, 261206, China. Electronic address:

Article Synopsis
  • The research addresses the low mechanical properties of biomass-based carbon aerogels, which limit their use in pressure sensing and energy storage for wearable tech and electronic skin.* -
  • A new supramolecular assembly structure inspired by natural wood was developed, utilizing bacterial cellulose and lignin, enhanced with graphene oxide for better performance.* -
  • The resulting carbon aerogels show remarkable features such as supercompressibility, high elasticity, stable sensor response, and impressive energy storage capabilities, making them ideal for wearable applications, even in extreme conditions.*
View Article and Find Full Text PDF

2-Amino-5-oxo-4-(thio-phen-2-yl)-5,6,7,8-tetra-hydro-4-chromene-3-carbo-nitrile.

IUCrdata

November 2024

School of Chemistry and Physics, University of KwaZulu-Natal, Westville campus, Private bag X54001, Durban, 4000, South Africa.

The crystal structure of the title compound, CHNOS, reveals two symmetrically independent mol-ecules within the asymmetric unit. Each mol-ecule contains a chromenone core attached to a 2-thio-phene ring, cyano, and amino groups. The 2-thio-phene ring of one of the two mol-ecules in the asymmetric unit was found to be disordered over two positions, with the major component having a site occupancy factor of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!