In this work we present a LIDAR sensor devised for the acquisition of time resolved laser induced fluorescence spectra. The gating time for the acquisition of the fluorescence spectra can be sequentially delayed in order to achieve fluorescence data that are resolved both in the spectral and temporal domains. The sensor can provide sub-nanometric spectral resolution and nanosecond time resolution. The sensor has also imaging capabilities by means of a computer-controlled motorized steering mirror featuring a biaxial angular scanning with 200 μradiant angular resolution. The measurement can be repeated for each point of a geometric grid in order to collect a hyper-spectral time-resolved map of an extended target.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.014736DOI Listing

Publication Analysis

Top Keywords

lidar sensor
8
hyper-spectral time-resolved
8
fluorescence spectra
8
fluorescence
4
fluorescence lidar
4
sensor
4
sensor hyper-spectral
4
time-resolved remote
4
remote sensing
4
sensing mapping
4

Similar Publications

A Comparison Study of Person Identification Using IR Array Sensors and LiDAR.

Sensors (Basel)

January 2025

Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.

Person identification is a critical task in applications such as security and surveillance, requiring reliable systems that perform robustly under diverse conditions. This study evaluates the Vision Transformer (ViT) and ResNet34 models across three modalities-RGB, thermal, and depth-using datasets collected with infrared array sensors and LiDAR sensors in controlled scenarios and varying resolutions (16 × 12 to 640 × 480) to explore their effectiveness in person identification. Preprocessing techniques, including YOLO-based cropping, were employed to improve subject isolation.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) imaging has a wide range of applications in civil and military fields. Over the past two decades, significant efforts have been devoted to developing high-resolution, high-sensitivity, and cost-effective SWIR sensors covering the spectral range from 0.9 μm to 3 μm.

View Article and Find Full Text PDF

Roadside tree segmentation and parameter extraction play an essential role in completing the virtual simulation of road scenes. Point cloud data of roadside trees collected by LiDAR provide important data support for achieving assisted autonomous driving. Due to the interference from trees and other ground objects in street scenes caused by mobile laser scanning, there may be a small number of missing points in the roadside tree point cloud, which makes it familiar for under-segmentation and over-segmentation phenomena to occur in the roadside tree segmentation process.

View Article and Find Full Text PDF

Reconfigurable Intelligent Surface (RIS) panels have garnered significant attention with the emergence of next-generation network technologies. This paper proposes a novel data-driven approach that leverages Light Detecting and Ranging (LiDAR) sensors to enhance user localization and beamforming in RIS-assisted networks. Integrating LiDAR sensors into the network will be instrumental, offering high-speed and precise 3D mapping capabilities, even in low light or adverse weather conditions.

View Article and Find Full Text PDF

The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local topography. In this study, we present the first observations of the surface dynamics of DGBL by integrating satellite- and ground-based InSAR data complemented by kinematic interpretation using a LiDAR-derived Digital Surface Model (DSM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!