The dorsomedial nucleus of the hypothalamus (DMH) has long been implicated in the genesis/regulation of escape, a panic-related defensive behavior. In the dorsal periaqueductal gray matter (dPAG), another key panic-associated area, serotonin, through the activation of 5-HT1A and 5-HT2A receptors, exerts an inhibitory role on escape expression. This panicolytic-like effect is facilitated by chronic treatment with clinically effective antipanic drugs such as fluoxetine and imipramine. It is still unclear whether serotonin within the DMH plays a similar regulatory action. The results showed that intra-DMH injection of the 5-HT1A receptor agonist 8-OH-DPAT, the preferential 5-HT2A receptor agonist DOI, but not the 5-HT2C agonist MK-212, inhibited the escape reaction of male Wistar rats evoked by electrical stimulation of the DMH. Local microinjection of the 5-HT1A antagonist WAY-100635 or the preferential 5-HT2A antagonist ketanserin was ineffective. Whereas chronic (21 days) systemic treatment with imipramine potentiated the anti-escape effect of both 8-OH-DPAT and DOI, repeated administration of fluoxetine enhanced the effect of the latter agonist. The results indicate that 5-HT1A and 5-HT2A receptors within the DMH play a phasic inhibitory role upon escape expression, as previously reported in the dPAG. Facilitation of 5-HT-mediated neurotransmission in the DMH may be implicated in the mode of action of antipanic drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0269881113492900 | DOI Listing |
ACS Chem Neurosci
December 2024
Designer Drug Research Unit, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States.
5-methoxy-,-dimethyltrytpamine (5-MeO-DMT) analogs are used as recreational drugs, but they are also being developed as potential medicines, warranting further investigation into their pharmacology. Here, we investigated the neuropharmacology of 5-MeO-DMT and several of its -alkyl, -allyl, and 2-methyl analogs, with three major aims: 1) to determine in vitro receptor profiles for the compounds, 2) to characterize in vitro functional activities at serotonin (5-HT) 2A receptors (5-HT) and 1A receptors (5-HT), and 3) to examine the influence of 5-HT on 5-HT-mediated psychedelic-like effects in the mouse head twitch response (HTR) model. In vitro receptor binding and functional assays showed that all 5-MeO-DMT analogs bind with high affinity and activate multiple targets (e.
View Article and Find Full Text PDFPharmacol Biochem Behav
December 2024
Psychedelic Research Centre, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czechia. Electronic address:
Rationale: Mescaline is a classical psychedelic compound with a phenylethylamine structure that primarily acts on serotonin 5-HT2A/C receptors, but also binds to 5-HT1A and 5-HT2B receptors. Despite being the first psychedelic ever isolated and synthesized, the precise role of different serotonin receptor subtypes in its behavioral pharmacology is not fully understood.
Objectives: In this study, we aimed to investigate how selective antagonists of 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT1A receptors affect the behavioral changes induced by subcutaneous administration of mescaline (at doses of 10, 20, and 100 mg/kg) in rats.
Front Psychiatry
September 2024
School of Medicine, University of Belgrade, Belgrade, Serbia.
Major depressive disorder (MDD) is among the most prevalent psychiatric conditions and a leading cause of disability worldwide. MDD presents a diverse range of symptoms that significantly impact personal, societal, and economic dimensions. Despite the availability of numerous antidepressant treatments (ADTs) targeting different molecular mechanisms, a substantial proportion of patients experience inadequate response, presenting a considerable challenge in MDD management.
View Article and Find Full Text PDFBiomolecules
September 2024
Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan.
For several decades, the dopamine hypothesis contributed to the discovery of numerous typical and atypical antipsychotics and was the sole hypothesis for the pathophysiology of schizophrenia. However, neither typical nor atypical antipsychotics, other than clozapine, have been effective in addressing negative symptoms and cognitive impairments, which are indices for the prognostic and disability outcomes of schizophrenia. Following the development of atypical antipsychotics, the therapeutic targets for antipsychotics expanded beyond the blockade of dopamine D2 and serotonin 5-HT2A receptors to explore the partial agonism of the D2 receptor and the modulation of new targets, such as D3, 5-HT1A, 5-HT7, and metabotropic glutamate receptors.
View Article and Find Full Text PDFBehav Pharmacol
October 2024
Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA.
The head-twitch response (HTR) in mice is considered a behavioral assay for activation of 5-HT 2A receptors in rodents. It can be evoked by direct-acting 5-HT 2A receptor agonists such as (±)-2,5-dimethoxy-4-iodoamphetamine, 5-hydroxytryptamine precursors [e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!