Botulinum neurotoxin A (BoNT/A) induces muscle paralysis by enzymatically cleaving the presynaptic SNARE protein SNAP-25, which results in lasting inhibition of acetylcholine release at the neuromuscular junction. A rapid and sensitive in vitro assay for BoNT/A is required to replace the mouse lethality assay (LD50) in current use. We have developed a fully automated sensor to assay the endoprotease activity of BoNT/A. We produced monoclonal antibodies (mAbs) that recognize SNAP-25 neo-epitopes specifically generated by BoNT/A action. Recombinant SNAP-25 was coupled to the sensor surface of a surface plasmon resonance (SPR) system and samples containing BoNT/A were injected over the substrate sensor. Online substrate cleavage was monitored by measuring binding of mAb10F12 to a SNAP-25 neo-epitope. The SNAP-25-chip assay was toxin serotype-specific and detected 55 fM BoNT/A (1 LD50/ml) in 5 min and 0.4 fM (0.01 LD50/ml) in 5h. Time-course and dose-response curves were linear, yielding a limit of quantification of 0.03 LD50/ml. This label-free method is 100 times more sensitive than the mouse assay, potentially providing rapid read-out of small amounts of toxin for environmental surveillance and the quality control of pharmaceutical preparations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2013.05.032DOI Listing

Publication Analysis

Top Keywords

substrate sensor
8
botulinum neurotoxin
8
assay
6
bont/a
6
sensor chip
4
chip assay
4
assay enzymatic
4
enzymatic activity
4
activity botulinum
4
neurotoxin botulinum
4

Similar Publications

Volatile sulfur compounds (VSCs) are prevalent human biogases detectable in individuals with periodontal disease; therefore, measuring VSC gases in human breath can yield significant, noninvasive diagnostic information indicative of such diseases. In this study, we developed a gas sensor with selective and enhanced sensing capabilities for VSCs methyl mercaptan and hydrogen sulfide. This sensor comprises a cellulose paper substrate impregnated with 2,2'-dithiobis(5-nitropyridine) and sodium acetate.

View Article and Find Full Text PDF

A simple and colorimetric method utilizing cell-free toehold switch sensors for the detection of Chlamydia trachomatis, Ureaplasma urealyticum and Neisseria gonorrhoeae.

Anal Chim Acta

February 2025

Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350207, China. Electronic address:

Background: Sexually transmitted infections (STIs) rank among the most prevalent acute infectious conditions and remain a major global public health concern. Notable STI pathogens include Chlamydia trachomatis (CT), Ureaplasma urealyticum (UU), and Neisseria gonorrhoeae (NG). Early detection and diagnosis are crucial for controlling the spread of STIs.

View Article and Find Full Text PDF

Self-signaling colorimetric sensor for selective detection of dopamine based on CoFeO nanozyme accelerated dopamine polymerization.

Anal Chim Acta

February 2025

Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, China. Electronic address:

Background: Reliable and selective detection of dopamine is crucial for the early diagnosis of various diseases. Transition metal based-nanozymes have shown great promise in the field of colorimetric detection of dopamine due to their remarkable stability and exceptional catalytic efficiency. However, these transition metal-based nanozymes typically function through a chromogenic reaction that relies on additional organic substrates, such as 3,3',5,5'-tetramethylbenzidine, to generate a detectable signal.

View Article and Find Full Text PDF

Introducing chiral molecules into metal-organic frameworks (MOFs) to obtain chiral MOFs (CMOFs), the tunability of their structures makes them a highly anticipated class of chiral materials for electrochemical sensing. However, the structure of CMOFs is often limited by synthesis challenges, and introducing chiral molecules into MOFs often leads to a decrease in their internal space. This study introduces a defect engineering strategy into the synthesis of CMOFs to obtain CMOFs with defects, which is an efficient synthesis method.

View Article and Find Full Text PDF

DNA nucleobases are important in DNA sequencing, disease testing linked to genes, and disease treatment. Here, we report density functional calculations investigating the adsorption of guanine (G), adenine (A), thymine (T), and cytosine (C) on armchair graphene nanoribbons (AGNR) - a gapped semiconductor. Their adsorption energies, charge transfer, work function, and electrical properties were calculated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!