Monolithic scintillation detectors for positron emission tomography and single-photon emission computed tomography (SPECT) imaging have many advantages over pixelated detectors. The use of monolithic crystals allows for reducing the scintillator cost per unit volume and increasing the sensitivity along with the energy and timing resolution of the detector. In addition, on thick detectors the depth-of-interaction can be determined without additional hardware. However, costly and complex calibration procedures have been proposed to achieve optimal detector performance for monolithic detectors. This hampers their use in commercial systems. There is thus, a need for simple calibration routines that can be performed on assembled systems. The main goal of this work is to develop a simplified calibration procedure based on acquired training data. In comparison with other methods that use training data acquired with beam sources attached to robotic stages, the proposed method uses a static un-collimated activity source with simple geometry acquiring in a reasonable time. Once the data are acquired, the calibration of the detector is accomplished in three steps: energy calibration based on the k-means clustering method, self-organization based on the self-organizing maps algorithm, and distortion correction based on the Monge-Kantorovich grid adaptation. The proposed calibration method was validated for 2D positioning using a SPECT detector. Similar results were obtained by comparison with an existing calibration method (maximum likelihood estimation). In conclusion, we proposed a novel calibration method for monolithic scintillation detectors that greatly simplifies their use with optimal performance in SPECT systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/58/14/4807 | DOI Listing |
Med Phys
November 2024
Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
Background: Motion of lung tumors during radiotherapy leads to decreased accuracy of the delivered dose distribution. This is especially true for proton radiotherapy due to the finite range of the proton beam. Methods for mitigating motion rely on knowing the position of the tumor during treatment.
View Article and Find Full Text PDFSci Rep
October 2024
College of Nanotechnology, Science and Engineering, University at Albany, State University of New York, Albany, NY, USA.
Epitaxial quantum dot (QD) scintillator crystals with picosecond-scale timing and high light yield have been created for medical imaging, high energy physics and national security applications. Monolithic photodetector (PD) integration enables the sensing of photons generated within the waveguiding crystal and allows a wide range of scintillator-photodetector coupling geometries. Until recently, these doubly novel devices have suffered from complex, high variance responses to monoenergetic sources which significantly reduces their precision and accuracy.
View Article and Find Full Text PDFCommun Eng
September 2024
Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA.
Position and time measurements of scintillation events encode information about the radiation source. Single photon avalanche diode (SPAD) arrays offer multiple-megapixel spatial resolution and tens of picoseconds temporal resolution for detecting single photons. Current lensless designs for measuring scintillation events use sensors that are lower in spatial resolution.
View Article and Find Full Text PDFMed Phys
July 2024
Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands.
Background: Gamma camera imaging, including single photon emission computed tomography (SPECT), is crucial for research, diagnostics, and radionuclide therapy. Gamma cameras are predominantly based on arrays of photon multipliers tubes (PMTs) that read out NaI(Tl) scintillation crystals. In this way, standard gamma cameras can localize ɣ-rays with energies typically ranging from 30 to 360 keV.
View Article and Find Full Text PDFPLoS One
March 2024
Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, Mexico.
Positron Emission Mammography (PEM) is a valuable molecular imaging technique for breast studies using pharmaceuticals labeled with positron emitters and dual-panel detectors. PEM scanners normally use large scintillation crystals coupled to sensitive photodetectors. Multiple interactions of the 511 keV annihilation photons in the crystals can result in event mispositioning leading to a negative impact in radiopharmaceutical uptake quantification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!