Boron nitride nanotubes (BNNTs) are intriguing nanomaterials with a wide range of potential biomedical applications. The assessment of BNNT interactions with biological systems, at both the cellular and subcellular levels, is an essential starting point for determining their bio-safety. We explore the effects of increasing concentrations of GC-BNNTs (0-100 μg/mL) on human vein endothelial cells (HUVECs), testing cell toxicity, proliferation, cytoskeleton integrity, cell activation and DNA damage. No significant changes were observed in cell viability, cytoskeleton integrity or DNA damage. Only a modest reduction in cell viability, tested by trypan blue assay, and the increased expression of vascular adhesion molecule-1, a marker of cell activation, were detected at the highest concentration used (100 μg/mL). Taken together, these findings indicate that GC-BNNTs do not affect endothelial cell biology, and are a promising first step in further investigation of their application potential in vascular targeting, imaging, and drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2013.05.031DOI Listing

Publication Analysis

Top Keywords

boron nitride
8
nitride nanotubes
8
endothelial cells
8
cytoskeleton integrity
8
cell activation
8
dna damage
8
cell viability
8
cell
6
cytocompatibility evaluation
4
evaluation glycol-chitosan
4

Similar Publications

The nonthermal destruction of aqueous film-forming foam (AFFF) stockpiles, one of the major culprits responsible for water and soil contamination by per- and polyfluoroalkyl substances (PFAS), is extremely challenging because of the coexistence of mixed recalcitrant PFAS and complicated organic matrices at extremely high concentrations. To date, the complete defluorination of undiluted AFFF at ambient conditions has not been demonstrated. This study reports a novel piezoelectric ball milling approach for treating AFFF with a total organic fluorine concentration of 9080 mg/L and total organic carbon of 234 g/L.

View Article and Find Full Text PDF

Universal Construction of Electrical Insulation and High-Thermal-Conductivity Composites Based on the In Situ Exfoliation of Boron Nitride-Graphene Hybrid Filler.

ACS Appl Mater Interfaces

January 2025

Institute of Soft-matter and Advanced Functional Materials, Gansu Province Carbon New Material Industry Technology Center, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.

Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler.

View Article and Find Full Text PDF

Ferroelectricity with concomitant Coulomb screening in van der Waals heterostructures.

Nat Nanotechnol

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.

Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.

View Article and Find Full Text PDF

Metallic Electro-optic Effect in Gapped Bilayer Graphene.

Nano Lett

January 2025

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

Electro-optic (EO) modulation is a critical device action in photonics. Recently, the non-Drude dynamics induced by the Berry curvature dipole (BCD) in metals have attracted attention as a potential candidate for terahertz EO modulation. However, such BCD-induced EO effects can be challenging to realize, often requiring flat bands and complex materials such as a strained magic-angle twisted bilayer graphene on hexagonal boron nitride.

View Article and Find Full Text PDF

Revealing the Principles of Confining Electroplated Lithium beneath the CVD Grown Single Layer 2D Materials.

Small

January 2025

MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Owing to the nanoscale thickness, excellent mechanical and chemical stabilities, 2D materials including graphene and hexagonal boron nitride have emerged as promising artificial solid electrolyte interphase (SEI) candidates for lithium metal batteries. However, whether the implementation of 2D materials is beneficial to electrochemical performance remains controversial, and the key to confining the electroplated Li beneath the 2D materials remains elusive. Here, a nanocrystalline graphene (NG) film is synthesized on high-carbon Cu and the Li plating/stripping behavior on Cu grown with different 2D materials is investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!