The gastrocnemius and soleus both contribute to the ankle plantarflexor moment during the mid- and terminal stance phases of gait. The gastrocnemius also generates a knee flexion moment that may lead to dynamic function that is unique from the soleus. This study used a muscle stimulation protocol to experimentally compare the contributions of individual plantarflexors to vertical support, forward propulsion and center of pressure (CoP) movement during normal gait. Twenty subjects walked on an instrumented treadmill at self-selected speeds with stimulating surface electrodes affixed over the medial gastrocnemius and soleus muscles. Short duration pulse trains (90 ms) were used to stimulate either the gastrocnemius or soleus at 20% or 30% of the gait cycle (GC) of random strides. Changes in ground reactions between stimulated and non-stimulated strides were evaluated to characterize the influence of each muscle on whole body movement during mid- (stimulation onset at 20% GC) and late (30% GC) stance. The gastrocnemius and soleus each induced an increase in vertical support and anterior progression of the CoP in mid-stance. However, late stance gastrocnemius activity induced forward acceleration, while both mid- and terminal stance soleus activity induced braking of forward velocity. The results suggested that the individual plantarflexors exhibit unique functions during normal gait, with the two muscles having opposite effects on forward propulsion. These empirical results are important both for enhancing the veracity of models used to predict muscle function in gait and also clinically as physicians seek to normalize gait in patients with plantarflexor dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795949PMC
http://dx.doi.org/10.1016/j.gaitpost.2013.05.009DOI Listing

Publication Analysis

Top Keywords

gastrocnemius soleus
16
forward propulsion
12
vertical support
12
center pressure
8
mid- terminal
8
terminal stance
8
individual plantarflexors
8
normal gait
8
stance gastrocnemius
8
activity induced
8

Similar Publications

Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.

View Article and Find Full Text PDF

Unlabelled: To investigate the effects of differing treadmills on impact acceleration and muscle activation.

Methods: 15 males and 7 females (27.8 ± 7.

View Article and Find Full Text PDF

Long-term blood glucose control via glucose-activated transcriptional regulation of insulin analogue in type 1 diabetes mice.

Diabetes Obes Metab

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China.

Aim: To achieve glucose-activated transcriptional regulation of insulin analogue in skeletal muscle of T1D mice, thereby controlling blood glucose levels and preventing or mitigating diabetes-related complications.

Materials And Methods: We developed the GANIT (Glucose-Activated NFAT-regulated INSA-F Transcription) system, an innovative platform building upon the previously established intramuscular plasmid DNA (pDNA) delivery and expression system. In the GANIT system, skeletal muscle cells are genetically engineered to endogenously produce the insulin analogue INSA-F (Insulin Aspart with Furin cleavage sites).

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Titin fragment is a sensitive biomarker in Duchenne muscular dystrophy model mice carrying full-length human dystrophin gene on human artificial chromosome.

Sci Rep

January 2025

Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan.

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations of the dystrophin gene, which spans 2.4 Mb on the X chromosome. Creatine kinase (CK) activity in blood and titin fragment levels in urine have been identified as biomarkers in DMD to monitor disease progression and evaluate therapeutic intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!