Objectives: To investigate the effect of UDMA %, of a range of filled UDMA:TEGDMA resins, on viscosity, degree of conversion and shear bond strength. Furthermore, to compare between model filled and unfilled UDMA adhesives, and clinically used orthodontic adhesives on these properties.

Methods: Four filled and four unfilled resins with a UDMA to TEGDMA weight ratio 50:50, 60:40, 70:30, 80:20 were formulated, tested and compared to the Bis-GMA control Transbond XT. The properties investigated were: viscosity (rotational viscometry), degree of conversion (DC) (FT-IR) and bond strength (shear bond strength test). One-way ANOVA and Tukey post hoc test was used to statistically analyze the data for viscosity and DC% while the non-parametric Kruskal-Wallis and Mann-Whitney U-test was used for the shear bond strength values.

Results: For SBS a comparable bond strength was obtained between the U80:T20(F) adhesive and the control Transbond XT (27.1 and 30.1 respectively). There was no significant difference between the U70:T30 adhesive and the control. Transbond XT (43.1%) had a significantly lower DC% than all the UDMA based adhesives. Furthermore, there was no significant difference between the DC% means of the various UDMA resins. There was a significant decrease in the viscosity for both filled and unfilled groups, as the TEGDMA concentration was increased.

Significance: The results indicate that adhesives formulated with UDMA and TEGDMA monomers, could produce resins with comparable viscosities to the Bis-GMA control, Transbond XT. Adhesives formulated with high UDMA %, can be used to produce resins with greater viscosity and increased bond strength, potentially without affecting their degree of conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2013.05.007DOI Listing

Publication Analysis

Top Keywords

bond strength
24
control transbond
16
degree conversion
12
shear bond
12
filled unfilled
12
orthodontic adhesives
8
udma tegdma
8
bis-gma control
8
adhesive control
8
dc% udma
8

Similar Publications

BACKGROUND Indirect ceramic restorations often need multiple firings to match the shade of natural teeth or need after-correction and ceramic addition during the clinical trial stage. Many studies have examined how multiple firings affect the mechanical characteristics of zirconia-veneered prostheses. The effect of firing number on adhesion between these core and heat-pressed lithium disilicate veneering ceramics is unclear.

View Article and Find Full Text PDF

This study aimed to compare the bonding efficacy three bioactive self-adhesive restorative systems to dentin. A total of 80 permanent human molars were utilized in this study. The occlusal enamel was removed to exposed mid-coronal dentin; 40 molars were used for microshear bond strength testing, while the remaining molars were used for micromorphological analysis of restoration/dentin interface.

View Article and Find Full Text PDF

This study investigates camel milk protein structural dynamics during digestion using Fourier Transform Infrared (FTIR) spectroscopy and Two-Dimensional Infrared (2D-IR) homo-correlation and hetero-correlation analysis. The synchronous 2DIR homo-correlation map reveals that NH bending and C-N stretching vibrations (amide II) are sensitive to digestion, indicating significant impacts on secondary structures. The asynchronous 2DIR homo-correlation indicates a stepwise process, where initial disruptions in NH interactions precede changes in CO stretching vibrations (amide I), highlighting the sequence of structural alterations during protein unfolding and degradation.

View Article and Find Full Text PDF

Why does silicon have an indirect band gap?

Mater Horiz

January 2025

Department of Materials Science, University of Michigan, Ann Arbor, Michigan 48109, USA.

It is difficult to intuit how electronic structure features-such as band gap magnitude, location of band extrema, effective masses, -arise from the underlying crystal chemistry of a material. Here we present a strategy to distill sparse and chemically-interpretable tight-binding models from density functional theory calculations, enabling us to interpret how multiple orbital interactions in a 3D crystal conspire to shape the overall band structure. Applying this process to silicon, we show that its indirect gap arises from a competition between first and second nearest-neighbor bonds-where second nearest-neighbor interactions pull the conduction band down from Γ to X in a cosine shape, but the first nearest-neighbor bonds push the band up near X, resulting in the characteristic dip of the silicon conduction band.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!