1. Methamphetamine (METH) is a highly addictive stimulant that is among the most widely abused illicit drugs. Clinical evidence has shown that the liver is a target of METH toxicity. The exact cellular and molecular mechanisms involved in METH-induced hepatotoxicity have not yet been completely understood. 2. In this study, the cellular pathways involved in METH liver toxicity were investigated in freshly isolated rat hepatocytes. METH cytotoxicity was associated with reactive oxygen species (ROS) formation, lipid peroxidation and rapid glutathione (GSH) depletion which is a third marker of cellular oxidative stress. Our results showed that the hepatocyte mitochondrial membrane potential (ΔΨm) was rapidly decreased by METH, which was prevented by antioxidants and ROS scavenger, suggesting that mitochondrial membrane damage was a consequence of ROS formation. Incubation of hepatocytes with METH also caused release of cytochrome c from mitochondria into the cytosol before cell lysis ensued. 3. Our findings showed that cytotoxic action of METH is mediated by oxidative stress and subsequent changes in mitochondrial membrane conformation and cytochrome c release into the cytosol which causes mitochondrial collapse of ΔΨm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/00498254.2013.807958 | DOI Listing |
Citrin Deficiency (CD) is caused by inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. We discovered that SLC25A13 loss causes accumulation of glycerol-3-phosphate (G3P), which activates carbohydrate response element binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol, and to transcribe key genes of lipogenesis.
View Article and Find Full Text PDFUnlabelled: Mitochondria are double membrane-bound organelles with pleiotropic roles in the cell, including energy production through aerobic respiration, calcium signaling, metabolism, proliferation, immune signaling, and apoptosis. Dysfunction of mitochondria is associated with numerous physiological consequences and drives various diseases, and is one of twelve biological hallmarks of aging, linked to aging pathology. There are many distinct changes that occur to the mitochondria during aging including changes in mitochondrial morphology, which can be used as a robust and simple readout of mitochondrial quality and function.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Medicine, University of Florida (UF) Health Cancer Center, University of Florida, Gainesville, FL, United States.
Mitochondria are essential double-membrane organelles with intricate structures and diverse functions within cells. Under normal physiological conditions, mitochondria regulate cellular metabolism and maintain energy homeostasis via the electron transport chain, mediate stem cell fate, and modulate reactive oxygen species production, playing a pivotal role in energy supply and lifespan extension. However, mitochondrial dysfunction can lead to various pathological changes, including cellular aging, necrosis, dysregulated tumor immunity, and the initiation and progression of cancer.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
School of Life Sciences, Zhengzhou University, Zhengzhou, China.
Polo-like kinase 1 (PLK1), a key regulator of the G2/M phase in mitosis, is frequently overexpressed in numerous tumors. Although PLK1 inhibitors have emerged as promising therapeutic agents for cancer, their use has been linked to significant anemia in a subset of patients, yet the underlying mechanisms remain poorly understood. In this study, we utilized an human umbilical cord blood-derived CD34 cell-based erythroid differentiation system, alongside a murine model, to investigate the impact of PLK1 inhibitors on erythropoiesis.
View Article and Find Full Text PDFArch Esp Urol
December 2024
Pediatric Surgery, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China.
Background: Doxorubicin (DOX) is a widely used anticancer drug; However, its nephrotoxicity limits its therapeutic efficacy. This study investigates the protective effects of Perilla Alcohol (PA) against DOX-induced nephrotic syndrome (NS), focusing on its antioxidant and anti-inflammatory properties through the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways.
Methods: A DOX-induced nephrotic syndrome (NS) rat model and a DOX-treated Mouse Podocyte Cell line 5 (MPC5) cell model were used to evaluate the renal protective effects of PA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!