The maternal separation (MS) paradigm is an animal model of early life stress. Animals subjected to MS during the first 2 weeks of life display altered behavioral and neuroendocrinological stress responses as adults. MS also produces altered responsiveness to and self-administration (SA) of various drugs of abuse including cocaine, ethanol, and amphetamine. However, no studies have yet examined the effects of MS on methamphetamine (METH) SA. This study was performed to examine the effects of MS on the acquisition of METH SA, extinction, and reinstatement of METH-seeking behavior in adulthood. Given the known influence of early life stress and drug exposure on epigenetic processes, we also investigated group differences in levels of the epigenetic marker methyl CpG binding protein 2 (MeCP2) in the nucleus accumbens (NAc) core. Long-Evans pups and dams were separated on postnatal days (PND) 2-14 for either 180 (MS180) or 15 min (MS15). Male offspring were allowed to acquire METH SA (0.05 mg/kg/infusion) in 15 2-h daily sessions starting at PND67, followed by extinction training and cue-induced reinstatement of METH-seeking behavior. Rats were then assessed for MeCP2 levels in the NAc core by immunohistochemistry. The MS180 group self-administered significantly more METH and acquired SA earlier than the MS15 group. No group differences in extinction or cue-induced reinstatement were observed. MS15 rats had significantly elevated MeCP2-immunoreactive cells in the NAc core as compared to MS180 rats. Together, these data suggest that MS has lasting influences on METH SA as well as epigenetic processes in the brain reward circuitry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683635PMC
http://dx.doi.org/10.3389/fpsyt.2013.00055DOI Listing

Publication Analysis

Top Keywords

nac core
12
maternal separation
8
extinction reinstatement
8
nucleus accumbens
8
early life
8
life stress
8
reinstatement meth-seeking
8
meth-seeking behavior
8
epigenetic processes
8
group differences
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!