The importance of residue sequence and duplex and triplex structures as basis for establishing molecular understanding of the structure-function relationships within glycopolymers is highlighted. The copolysaccharide alginate is the selected example for elucidating effects of residue sequence on functional properties like ionotropic gelation. Xanthan and comblike branched β-D-glucans are used as examples of impact of duplex and triplex organization on global conformation and functional properties. Combined with further examples within self-interactions of mucins possessing different saccharide decorations, polyelectrolyte complexation and multilayer formation, the examples indicate that a molecular understanding of various properties related to impact of residue sequences, duplex, and triplex organization can be established. Strategies similar to those included in the highlighted examples, also combined with novel tools, for example single-molecule approaches, interrogated by combination of experimental and theoretical/numerical approaches, and investigated closer to the native biological state, are expected to further advance the field.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.22320DOI Listing

Publication Analysis

Top Keywords

duplex triplex
16
triplex organization
12
structure-function relationships
8
relationships glycopolymers
8
effects residue
8
residue sequences
8
sequences duplex
8
residue sequence
8
molecular understanding
8
functional properties
8

Similar Publications

Psoralen-conjugated triplex-forming oligonucleotides (Ps-TFOs) have been employed for the photodynamic regulation of gene expression by the photo-cross-linking of psoralen with the target DNA. However, stable triplex formation requires a consecutive purine base sequence in one strand of the target DNA duplexes. The pyrimidine-base interruption in the consecutive purine base sequence drastically decreases the thermodynamic stability of the corresponding triplex, which hampers the TFO application.

View Article and Find Full Text PDF

Multi-gene precision editing tool using CRISPR-Cas12a/Cpf1 system in Ogataea polymorpha.

Microb Cell Fact

January 2025

National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

Background: Ogataea polymorpha, a non-conventional methylotrophic yeast, has demonstrated significant potential for heterologous protein expression and the production of high-value chemicals and biopharmaceuticals. However, the lack of precise and efficient genome editing tools severely hinders the construction of cell factories. Although the CARISP-Cas9 system has been established in Ogataea polymorpha, the gene editing efficiency, especially for multiple genes edition, needs to be further improved.

View Article and Find Full Text PDF

Revealing New Analytical Insights into RNA Complexes: Divalent siRNA Characterization by Liquid Chromatography and Mass Spectrometry.

Anal Chem

January 2025

Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, California 94080, United States.

Accurate characterization of therapeutic RNA, including purity and identity, is critical in drug discovery and development. Here, we utilize denaturing and non-denaturing chromatography for the analysis of ∼25 kDa divalent small interfering RNA (di-siRNA), which comprises a complex 2:1 triplex structure. Ion pair reversed-phase (IPRP) liquid chromatography (LC) experiments with UV absorbance and mass spectrometry (MS) showcase a single denaturing LC method for identity confirmation, impurity profiling, and sequencing with automated MS data interpretation.

View Article and Find Full Text PDF

In the field of drug development, the quest for novel compounds that bind to DNA with high affinity and specificity never ends. In the present work, we report the newest development in this field, namely, triplex DNA-specific binding ligands based on the 5-substituted flavone scaffold in our lab. Biophysical studies showed that the newly synthesized flavone derivatives (depending on the side chains) bind to triplex DNA with binding affinities better than or similar to 5-substituted 3,3',4',7-tetramethoxyflavonoids.

View Article and Find Full Text PDF

Assessment of methodologies based on the formation of antiparallel triplex DNA structures and fluorescent silver nanoclusters for the detection of pyrimidine-rich sequences.

Spectrochim Acta A Mol Biomol Spectrosc

March 2025

Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain. Electronic address:

In this work, strategies for the detection of pyrimidine-rich DNA target sequences based on the formation of duplex and antiparallel triplex structures are studied. The presence of the target is detected from the changes in fluorescence of silver nanoclusters stabilized by the corresponding complementary DNA probes. In all cases, the formation of intermolecular structures has been assessed by means of melting experiments and multivariate analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!