Urine is a suitable biological fluid to look for markers of physiological and pathological processes, including renal and nonrenal diseases. In addition, it is an optimal body sample for diagnosis, because it is easily obtained without invasive procedures and can be sampled in large quantities at almost any time. Rats are frequently used as a model to study human diseases, and rat urine has been analyzed to search for disease biomarkers. The normal human urinary proteome has been studied extensively, but the normal rat urinary proteome has not been studied in such depth. In light of this, we were prompted to analyze the normal rat urinary proteome using three complementary proteomics platforms: SDS-PAGE separation, followed by LC-ESI-MS/MS; 2DE, followed by MALDI-TOF-TOF and 2D-liquid chromatography-chromatofocusing, followed by LC-ESI-Q-TOF. A total of 366 unique proteins were identified, of which only 5.2% of unique proteins were identified jointly by the three proteomics platforms used. This suggests that simultaneous proteomics techniques provide complementary and nonredundant information. Our analysis affords the most extensive rat urinary protein database currently available and this may be useful in the study of renal physiology and in the search for biomarkers related to renal and nonrenal diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.201200689 | DOI Listing |
Narra J
December 2024
Department of Urology, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
Contrast-induced acute kidney injury is a common complication marked by reduced kidney function within 48 hours of contrast administration. The aim of this study was to evaluate renal function, anatomy, and molecular changes at 24 hours, 48 hours, and 72 hours post-iodinated contrast media (ICM) administration. This true-experimental study used a post-test-only control group design.
View Article and Find Full Text PDFNarra J
December 2024
Department of Anatomical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
Transforming growth factor-beta 1 () and type I collagen play crucial roles in the pathogenesis of diabetic bladder disease (DBD). Moderate-intensity aerobic exercise increases antioxidant activity to help manage DBD. The aim of this study was to evaluate the effect of moderate-intensity aerobic exercise on the expression of and type I collagen in the detrusor and lamina propria of the bladder in a type 2 diabetes mellitus (T2DM) rat model.
View Article and Find Full Text PDFBMC Urol
January 2025
Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China.
Background: In male patients, benign prostate hyperplasia (BPH) and overactive bladder (OAB) secondary to BPH are the primary causes of Lower Urinary Tract Symptoms (LUTS). Recent clinical studies have reported an increased risk of LUTS, particularly severe LUTS conditions, in male asthmatic patients. However, the potential link and mechanism remain unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, China.
Acute kidney injury (AKI) has become a disease of global concern due to its high morbidity and mortality. This has highlighted the need for renoprotective agents. Astragaloside IV (AS-IV) is a saponin isolated from Astragalus membranaceus with good antioxidant, anti-inflammatory and anti-tumor properties.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Shanxi Genetic Engineering Center for Experimental Animal Models, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, Shanxi, China.
Phospholipase A2 receptor 1 (PLA2R1) exists in many animals and plays an important role in membranous nephropathy. In this study, we aimed to evaluate a PLA2R1 knock-in rat model with repaired kidney function to study the molecular mechanisms of membranous nephropathy. We constructed the PLA2R1 knockout [PLA2R1(-)] model and PLA2R1 knock in [PLA2R1(+)] model in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!