Predicting the penetration of drugs across the human blood-brain barrier (BBB) is a significant challenge during their development. A variety of in vitro systems representing the BBB have been described, but the optimal use of these data in terms of extrapolation to human unbound brain concentration profiles remains to be fully exploited. Physiologically based pharmacokinetic (PBPK) modelling of drug disposition in the central nervous system (CNS) currently consists of fitting preclinical in vivo data to compartmental models in order to estimate the permeability and efflux of drugs across the BBB. The increasingly popular approach of using in vitro-in vivo extrapolation (IVIVE) to generate PBPK model input parameters could provide a more mechanistic basis for the interspecies translation of preclinical models of the CNS. However, a major hurdle exists in verifying these predictions with observed data, since human brain concentrations can't be directly measured. Therefore a combination of IVIVE-based and empirical modelling approaches based on preclinical data are currently required. In this review, we summarise the existing PBPK models of the CNS in the literature, and we evaluate the current opportunities and limitations of potential IVIVE strategies for PBPK modelling of BBB penetration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787211PMC
http://dx.doi.org/10.1208/s12248-013-9496-0DOI Listing

Publication Analysis

Top Keywords

physiologically based
8
based pharmacokinetic
8
modelling drug
8
pbpk modelling
8
models cns
8
modelling
4
pharmacokinetic modelling
4
drug penetration
4
penetration blood-brain
4
blood-brain barrier--towards
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!