In this study, we have investigated temporal evolution of silicon surface topography under 500-eV argon ion bombardment for two angles of incidence, namely 70° and 72.5°. For both angles, parallel-mode ripples are observed at low fluences (up to 2 × 1017 ions cm-2) which undergo a transition to faceted structures at a higher fluence of 5 × 1017 ions cm-2. Facet coarsening takes place at further higher fluences. This transition from ripples to faceted structures is attributed to the shadowing effect due to a height difference between peaks and valleys of the ripples. The observed facet coarsening is attributed to a mechanism based on reflection of primary ions from the facets. In addition, the role of sputtering is investigated (for both the angles) by computing the fractional change in sputtering yield and the evolution of surface roughness. PACS: 81.05.Cy, 81.16.Rf, 61.80.Jh, 87.64.Dz.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691652PMC
http://dx.doi.org/10.1186/1556-276X-8-289DOI Listing

Publication Analysis

Top Keywords

faceted structures
12
transition ripples
8
ripples faceted
8
argon ion
8
ion bombardment
8
ripples observed
8
1017 ions
8
ions cm-2
8
facet coarsening
8
structures low-energy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!