Extracellular short fibulins, fibulin-3, -4, and -5, are components of the elastic fiber/microfibril system and are implicated in the formation and homeostasis of elastic tissues. In this study, we report new structural and functional properties of the short fibulins. Full-length human short fibulins were recombinantly expressed in human embryonic kidney cells and purified by immobilized metal ion affinity chromatography. All three fibulins showed various levels of degradation after the purification procedure. N-terminal sequencing revealed that all three fibulins are highly susceptible to proteolysis within the N-terminal linker region of the first calcium-binding epidermal growth factor domain. Proteolytic susceptibility of the linker correlated with its length. Exposure of these fibulins to matrix metalloproteinase (MMP)-1, -2, -3, -7, -9, and -12 resulted in similar proteolytic fragments with MMP-7 and -12 being the most potent proteases. Fibulin-3 proteolysis was almost completely inhibited in cell culture by the addition of 25 μm doxycycline (a broad spectrum MMP inhibitor). Reducible fibulin-4 dimerization and multimerization were consistently observed by SDS-PAGE, Western blotting, and mass spectrometry. Atomic force microscopy identified monomers, dimers, and multimers in purified fibulin-4 preparations with sizes of ∼10-15, ∼20-25, and ∼30-50 nm, respectively. All short fibulins strongly adhered to human fibroblasts and smooth muscle cells. Although only fibulin-5 has an RGD integrin binding site, all short fibulins adhere at a similar level to the respective cells. Solid phase binding assays detected strong calcium-dependent binding of the short fibulins to immobilized heparin, suggesting that these fibulins may bind cell surface-located heparan sulfate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829366 | PMC |
http://dx.doi.org/10.1074/jbc.M112.439158 | DOI Listing |
PLoS One
July 2024
Department of Bioscience, Kwansei Gakuin University, Sanda, Japan.
The ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family metalloprotease MIG-17 plays a crucial role in the migration of gonadal distal tip cells (DTCs) in Caenorhabditis elegans. MIG-17 is secreted from the body wall muscle cells and localizes to the basement membranes (BMs) of various tissues including the gonadal BM where it regulates DTC migration through its catalytic activity. Missense mutations in the BM protein genes, let-2/collagen IV a2 and fbl-1/fibulin-1, have been identified as suppressors of the gonadal defects observed in mig-17 mutants.
View Article and Find Full Text PDFFish Shellfish Immunol
August 2024
Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea. Electronic address:
J Heart Lung Transplant
March 2024
Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
Case Rep Ophthalmol
November 2023
Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, Rome, Italy.
Introduction: Doyne honeycomb retinal dystrophy (DHRD), or autosomal dominant radial drusen, is a genetic disease caused by pathogenic variants of the epidermal growth factor (EGF)-containing fibulin-like extracellular matrix protein 1 gene and is characterized by the formation of subretinal drusenoid deposits. In a previous study, we reported the short-term beneficial effects of nanosecond laser treatment (2RT) on retinal function in DHRD. The aim of the present report was to describe the findings of a long-term follow-up of retinal structure/function in a small case series of patients with DHRD who underwent 2RT treatment.
View Article and Find Full Text PDFTransl Cancer Res
December 2022
Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
Background And Objective: The prognosis of patients with malignant pleural mesothelioma (MPM) is poor, and early diagnosis is key to improving the prognosis. Pleural biopsy is the gold reference for diagnosing MPM, but it is an invasive method that can cause operation-related complications such as bleeding and infection. Serum biomarkers, with the advantages of mini-invasiveness, short turnaround time and objectiveness, represent a promising diagnostic tool for MPM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!