The electronic spectrum of the indene radical cation has been investigated through resonance-enhanced photodissociation of the weakly bound C9H8(+)-He and C9H8(+)-Arn (n = 1, 2) complexes in a tandem mass spectrometer. The D2 ← D0 band origin for indene(+)-He is observed at 17,379 ± 15 cm(-1), while the D2 ← D0 and D4 ← D0 band origins for indene(+)-Ar appear at 17,353 ± 15 cm(-1) and 28,254 ± 15 cm(-1), respectively. The vibronic structure of the D2 ← D0 band system is assigned by comparison with a simulated spectrum based on time-dependent density functional theory calculations, and is due mainly to progressions in ring deformation vibrational modes. Possible correspondences between the stronger visible transitions of the indene cation and diffuse interstellar bands observed towards the heavily reddened star HD 204827 are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4808380DOI Listing

Publication Analysis

Top Keywords

indene cation
8
d2 ← d0 band
8
gas-phase electronic
4
electronic spectroscopy
4
spectroscopy indene
4
cation c9h8+
4
c9h8+ electronic
4
electronic spectrum
4
spectrum indene
4
indene radical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!