Aim: To develop a mathematical model that adequately represented the pattern of craniofacial growth in class III subject consistently, with the goal of using this information to make growth predictions that could be amenable to longitudinal verification and clinical use.
Materials And Methods: A combination of computational techniques (i.e. Fuzzy clustering and Network analysis) was applied to cephalometric data derived from 429 untreated growing female patients with class III malocclusion to visualize craniofacial growth dynamics and correlations. Four age groups of subjects were examined individually: from 7 to 9 years of age, from 10 to 12 years, from 13 to 14 years, and from 15 to 17 years.
Results: The connections between pathway components of class III craniofacial growth can be visualized from Network profiles. Fuzzy clustering analysis was able to define further growth patterns and coherences of the traditionally reported dentoskeletal characteristics of this structural imbalance. Craniofacial growth can be visualized as a biological, space-constraint-based optimization process; the prediction of individual growth trajectories depends on the rate of membership to a specific 'winner' cluster, i.e. on a specific individual growth strategy. The reliability of the information thus gained was tested to forecast craniofacial growth of 28 untreated female class III subjects followed longitudinally.
Conclusion: The combination of Fuzzy clustering and Network algorithms allowed the development of principles for combining multiple auxological cephalometric features into a joint global model and to predict the individual risk of the facial pattern imbalance during growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ejo/cjt036 | DOI Listing |
Cleft Palate Craniofac J
January 2025
San Diego State University/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA.
Objective: Craniofacial conditions (CFCs) can be associated with adverse effects on quality of life (QoL). However, few studies have examined perceived benefits related to CFCs. This study described perceived benefits in an international sample of children and adolescents with CFCs and their parents.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Anatomy and Cell Biology.
The oral mucosa undergoes daily insults, and stem cells in the epithelial basal cell layer regenerate gingiva tissue to maintain oral health. The Iroquois Homeobox 1 (IRX1) protein is expressed in the stem cell niches in human/mouse oral epithelium and mesenchyme under homeostasis. We found that Irx1+/- heterozygous (Het) mice have delayed wound closure, delayed morphological changes of regenerated epithelium, and defective keratinocyte proliferation and differentiation during wound healing.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Cole-Carpenter syndrome (CCS) is a rare autosomal-dominant genetic disease characterized by craniosynostosis, ocular proptosis, hydrocephalus, distinctive facial features, and bone fragility. Previous cases of CCS are associated with genetic variations in P4HB, which encodes the protein disulfide isomerase (PDI), a key enzyme in protein folding. Patients with CCS caused by P4HB mutations often present with short stature, limb deformities, and abnormal epiphyseal plates.
View Article and Find Full Text PDFArch Oral Biol
January 2025
Department of Dentistry-Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud university medical center, Philips van Leydenlaan 25, Nijmegen 6525 EX, the Netherlands. Electronic address:
Objectives: To investigate in vivo whether myofibroblasts formed in the PDL after exposure to short-term high experimental orthodontic forces in rats survive. To study in vitro whether human PDL fibroblasts can differentiate into myofibroblasts and survive when chemical or mechanical stimuli are removed.
Design: Nine 6-week-old male Wistar rats were used in this experiment.
Development
January 2025
Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.
The calvarial bones of the infant skull are linked by transient fibrous joints known as sutures and fontanelles, which are essential for skull compression during birth and expansion during postnatal brain growth. Genetic conditions caused by pathogenic variants in FGFR2, such as Apert, Pfeiffer, Crouzon syndromes, result in calvarial deformities due to premature suture fusion and a persistently open anterior fontanelle (AF). In this study we investigated how Fgfr2 regulates AF closure by leveraging mouse genetics and single-cell transcriptomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!