All processes requiring interaction with DNA are attuned to occur within the context of the complex chromatin structure. As it does for programmed transcription and replication, this also holds true for unscheduled events, such as repair of DNA damage. Lesions such as double-strand breaks occur randomly; their repair requires that enzyme complexes access DNA at potentially any genomic site. This is achieved by chromatin remodeling factors that can locally slide, evict, or change nucleosomes. Here, we show that the Swi2/Snf2-related (SWR1 complex), known to deposit histone H2A.Z, is also important for DNA repair in Arabidopsis thaliana. Mutations in genes for Arabidopsis SWR1 complex subunits photoperiod-independent Early Flowering1, actin-related protein6, and SWR1 complex6 cause hypersensitivity to various DNA damaging agents. Even without additional genotoxic stress, these mutants show symptoms of DNA damage accumulation. The reduced DNA repair capacity is connected with impaired somatic homologous recombination, in contrast with the hyper-recombinogenic phenotype of yeast SWR1 mutants. This suggests functional diversification between lower and higher eukaryotes. Finally, reduced fertility and irregular gametogenesis in the Arabidopsis SWR1 mutants indicate an additional role for the chromatin-remodeling complex during meiosis. These results provide evidence for the importance of Arabidopsis SWR1 in somatic DNA repair and during meiosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723608PMC
http://dx.doi.org/10.1105/tpc.112.104067DOI Listing

Publication Analysis

Top Keywords

arabidopsis swr1
16
dna repair
16
dna
9
chromatin-remodeling complex
8
dna damage
8
swr1 complex
8
swr1 mutants
8
repair
6
swr1
6
arabidopsis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!