Ammonium sulfide ((NH4)2S) exhibits high reactivity as a sulfide reagent in anion exchange reactions that transform CoO to cobalt sulfide nanoparticles (NPs). The faster diffusion of Co(2+) and O(2-) than the incoming S(2-) during the anion exchange causes a significant expansion of the NP voids. The low temperature (70 °C) anion exchange reaction produces amorphous cobalt sulfide NPs with Co : S ratio of ca. 3 : 4, which are converted into crystalline NPs with a major phase of cubic Co3S4 by annealing at high temperature in an organic solution.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt50803jDOI Listing

Publication Analysis

Top Keywords

anion exchange
16
low temperature
8
exchange reactions
8
cobalt sulfide
8
nh42s highly
4
highly reactive
4
reactive molecular
4
molecular precursor
4
precursor low
4
anion
4

Similar Publications

Carbon black has been extensively employed as the support for noble metal catalysts for electrocatalysis applications. However, the nearly catalytic inertness and weak interaction with metal species of carbon black are two major obstacles that hinder the further improvement of the catalytic performance. Herein, we report a surface functionalization strategy by decorating transition metal oxide clusters on the commercial carbon black to offer specific catalytic activity and enhanced interaction with metal species.

View Article and Find Full Text PDF

Unlocking Peak Efficiency in Anion-Exchange Membrane Electrolysis with Iridium-Infused Ni/NiP Heterojunction Electrocatalysts.

Small

January 2025

Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.

Developing cost-effective, highly efficient, and durable bifunctional electrocatalysts for water electrolysis remains a significant challenge. Nickel-based materials have shown promise as catalysts, but their efficiency in alkaline electrolytes is still lacking. Fascinatingly, Mott-Schottky catalysts can fine-tune electron density at interfaces, boosting intermediate adsorption and facilitating desorption to reduce the energy barrier.

View Article and Find Full Text PDF

Highly Efficient and Durable Ammonia Electrolysis Cell Using Zirfon Separator.

Adv Sci (Weinh)

January 2025

Department of Materials Science and Engineering, Pohang University of Science and Technology, Gyeongbuk, 37673, Republic of Korea.

Most studies on ammonia electrolysis have focused on anion exchange membranes (AEMs), which face limitations in operating conditions, such as pH and ammonia concentration. This study introduces a novel concept of an ammonia electrolysis cell (AEC) utilizing a Zirfon separator capable of operating under high pH and ammonia concentrations. The Zirfon-based AECs achieve a peak current density of 915 mA cm, representing the highest reported value in AEC literature.

View Article and Find Full Text PDF

The hydrogen spillover phenomenon provides an expeditious reaction pathway via hydrogen transfer from a strong H adsorption site to a weak H adsorption site, enabling a cost-efficient hydrogen evolution reaction (HER) analogous to platinum with moderate H adsorption energy. Here, a high-entropy oxychalcogenide (HEOC) comprising Co, Ni, Mo, W, O, Se, and Te is prepared by a two-step electrochemical deposition for hydrogen spillover-enhanced HER in acidic and alkaline water electrolysis. The anodic-cathodic reversal current enables the co-deposition of cations and aliovalent anions, facilitating a glass structure with multiple active sites for hydrogen spillover.

View Article and Find Full Text PDF

PdNi Trimer Sites Drive Efficient and Durable Hydrogen Oxidation in Alkaline Media.

J Am Chem Soc

January 2025

Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Anion-exchange membrane fuel cell (AEMFC) is a cost-effective hydrogen-to-electricity conversion technology under a zero-emission scenario. However, the sluggish kinetics of the anodic hydrogen oxidation reaction (HOR) impedes the commercial implementation of AEMFCs. Here, we develop a Pd single-atom-embedded NiN catalyst (Pd/NiN) with unconventional PdNi trimer sites to drive efficient and durable HOR in alkaline media.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!