Platinum coated by silver nanoparticles was synthesized, which displays a unique structure where polycrystalline platinum particles are completely encapsulated in continuous monocrystalline silver shells. These particles display accentuated electronic properties, where the silver shells gain electron density from the platinum cores, imparting enhanced properties such as oxidation resistance. This electron transfer phenomenon is highly interfacial in nature, and the degree of electron transfer decreases as the thickness of silver shell increases. The nanoparticle structure and electronic properties are studied and the implication to creating sensing probes with enhanced robustness, sensitivity and controllable plasmonic properties is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715221 | PMC |
http://dx.doi.org/10.3390/s130607813 | DOI Listing |
J Fluoresc
January 2025
Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Physics \ Collage of Sciences, University of Kufa, Najaf, Iraq.
This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China.
Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).
View Article and Find Full Text PDFJ Comput Chem
January 2025
Instituto de Química, Universidade de Brasília, Brasília, Brazil.
This study aims to shed light on the mechanism and kinetics of 1,4-dioxane degradation by hydroxyl radical (OH) across various solvation conditions to evaluate electronic and structural properties at the MP2/aug-cc-pVTZ level. Transition states (TS) structures determined in the gas phase and SMD solvation model reveal similar hydrogen abstraction patterns. In contrast, the explicit solvation model (ES) introduces significant changes, suggesting a kinetic preference for axial pathways.
View Article and Find Full Text PDFSmall
January 2025
Nanotechnology and Bio-Engineering Research Group, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland.
The rising demand for efficient energy storage in flexible electronics is driving the search for materials that are well-suited for the fabrication of these devices. Layered Double Hydroxides (LDHs) stand out as a remarkable material with a layered structure that embodies exceptional electrochemical properties. In this study, both double-shelled and single-shelled NiFe-Layered Double Hydroxide (LDH) particles are prepared using spindle-shaped MIL-101(Fe) as the template.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!