Benzimidazole derivative vs. different phases of TiO2-physico-chemical approach.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamilnadu, India.

Published: October 2013

1-Benzyl-2-phenyl-1H-benzo[d]imidazole (BPBI) has been synthesized by simple steps and characterized by spectral studies. Absorption and fluorescence spectral studies have been employed to investigate the interaction of BPBI with the anatase, hombikat, P25 and rutile phases of TiO2. The emission of the BPBI is efficiently quenched by anatase, hombikat and P25 TiO2 nanoparticles owing to charge injection from the excited singlet state of BPBI to the conduction band of the TiO2 nanoparticles. Surprisingly, rutile phase enhances the fluorescence which is likely due to lowering of LUMO and HOMO levels of the ligand on ducking of the benzimidazole moiety of the BPBI molecule into the void space of rutile TiO2. Electron injection from photoexcited BPBI to the TiO2 conduction band (S*→S(+)+e(-)(CB)) is likely to enhance the fluorescence.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2013.05.082DOI Listing

Publication Analysis

Top Keywords

spectral studies
8
anatase hombikat
8
hombikat p25
8
tio2 nanoparticles
8
conduction band
8
bpbi
6
tio2
5
benzimidazole derivative
4
derivative phases
4
phases tio2-physico-chemical
4

Similar Publications

Intrinsically disordered proteins and protein regions are central to many biological processes but difficult to characterize at atomic resolution. Nuclear magnetic resonance is particularly well-suited for providing structural and dynamical information on intrinsically disordered proteins, but existing NMR methodologies need to be constantly refined to provide greater sensitivity and resolution, particularly to capitalise on the potential of high magnetic fields to investigate large proteins. In this paper, we describe how N-detected 2D NMR experiments can be optimised for better performance.

View Article and Find Full Text PDF

Spectral dispersion in low-field nuclear magnetic resonance (NMR) can significantly affect NMR spectral analysis, particularly when studying complex mixtures like metabolic profiling of biological samples. To address signal superposition in these spectra, we employed spectral editing with selective excitation pulses, proving it to be a suitable approach. Optimal control pulses were implemented in low-field NMR and demonstrated their capability to selectively excite and eliminate specific amino acids, such as phenylalanine and taurine, either individually or simultaneously.

View Article and Find Full Text PDF

In this study, we investigated the cytotoxic effect of highly soluble dextran-coated CeO nanoparticles on human fetal lung fibroblasts MRC-5. We examined individual nanoparticle-treated cells by Raman spectroscopy and analyzed Raman spectra using non-negative principal component analysis and k-means clustering. In this way, we determined dose-dependent differences between treated cells, which were reflected through the intensity change of lipid, phospholipid and RNA-related Raman modes.

View Article and Find Full Text PDF

Flow environment affects nutrient transport in soft plant roots.

Soft Matter

January 2025

Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.

This work estimates Michaelis-Menten kinetics parameters for nutrient transport under varying flow rates in the soft roots of Indian mustard () using a plant fluidic device. To find the metallic components within the roots, inductively coupled plasma mass spectrometry (ICP-MS) analysis was performed. The flow rate-dependent metabolic changes were examined using Raman spectral analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!