A series of new peptide dendrimers with amphiphilic surface, designed around a dendronized ornithine (Orn) core were synthesized and characterized by ESI-MS, ¹H-, ¹³C- NMR, and CD spectrometry. An improved antimicrobial potency against S. aureus and E. coli was detected as a result of an increased charge, higher branching and variable lipophilicity of the residues located at the C-terminus. Minimal inhibitory concentration (MIC) values indicated that the selected dendrimers were not sensitive to the physiological concentration of Na⁺ and K⁺ ions (100 mM), but expressed reduced potency at 10 mM concentration of Mg²⁺ and Ca²⁺ ions. Circular dichroism (CD) curves measured under various conditions revealed structure and solvent-dependent curve evolution. ESI-MS studies of gas-phase interactions between selected dendrimers and both anionic (DMPG) and neutral (DMPC) phospholipids revealed the presence of variously charged dendrimer/phospholipid aggregates with 1:1 to 1:5 stoichiometry. The collision-induced fragmentation (CID) of the most abundant [dendrimer/phospholipid]²⁺ ions of the 1:1 stoichiometry demonstrated that the studied dendrimers formed stronger complexes with anionic DMPG. Both phospholipids have higher affinity towards dendrimers with a more compact structure. Higher differences in CID energy necessary for dissociation of 50% of the complex formed by dendrimers with DMPG vs. DMPC (ΔCID₅₀) correlate with a lower hemotoxicity. Mass spectrometry results suggest that for a particular group of compounds the ΔCID₅₀ might be one of the important factors explaining selectivity of antimicrobial peptides and their branched analogs targeting the bacterial membrane. Both circular dichroism and mass spectrometry studies demonstrated that dendrimers of N(α)- and N(ε)-series possess a different conformation in solution and different affinity to model phospholipids, what might influence their specific microbicidal mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270063PMC
http://dx.doi.org/10.3390/molecules18067120DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
dendrimers
8
peptide dendrimers
8
dendrimers amphiphilic
8
amphiphilic surface
8
selected dendrimers
8
circular dichroism
8
anionic dmpg
8
novel antimicrobial
4
antimicrobial peptide
4

Similar Publications

The main objective of this prospective, multicenter study (REVEAL-CP) was to test children with cerebral palsy-like signs and symptoms for raised 3--methyldopa (3-OMD) blood levels, a biomarker for aromatic L-amino acid decarboxylase deficiency (AADCd). A secondary objective was to characterize the molecular basis for the defective aromatic L-amino acid decarboxylase (AADC) gene product. Patients were identified in pediatric secondary and tertiary care hospitals through database searches and personal communication.

View Article and Find Full Text PDF

The distribution and bioaccumulation of environmental pollutants are essential to understanding their toxicological mechanism. However, achieving spatial resolution at the subtissue level is still challenging. Perfluorooctanesulfonate (PFOS) is a persistent environmental pollutant with widespread occurrence.

View Article and Find Full Text PDF

Lanthanide Metal-Organic Framework Flowers for Proteome Profiling and Biomarker Identification in Ultratrace Biofluid Samples.

ACS Nano

January 2025

Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.

Identifying effective biomarkers has long been a persistent need for early diagnosis and targeted therapy of disease. While mass spectrometry-based label-free proteomics with trace cell has been demonstrated, deep proteomics with ultratrace human biofluid remains challenging due to low protein concentration, extremely limited patient sample volume, and substantial protein contact losses during preprocessing. Herein, we proposed and validated lanthanide metal-organic framework flowers (MOF-flowers), as effective materials, to trap and enrich protein in biofluid jointly through cation-π interaction and O-Ln coordination.

View Article and Find Full Text PDF

Ergothioneine, a New Acrolein Scavenger at Elevated Temperature.

J Agric Food Chem

January 2025

Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, People's Republic of China.

Acrolein (ACR) present in vivo and in vitro can damage proteins and DNA, linking it to various chronic diseases. In this paper, ergothioneine (EGT), abundant in edible mushrooms, has been studied for its ability to trap ACR and its reaction pathway with ACR at high temperatures using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS/MS). We synthesized the adducts (EGT-ACR-1 and EGT-ACR-2), elucidating their structure and reaction site through HRMS and nuclear magnetic resonance.

View Article and Find Full Text PDF

Ginsenosides are the most important secondary metabolites of ginseng. Ginseng has developed certain insect resistance properties during the course of evolutionary environmental adaptation. However, the mechanism underlying the insect resistance of ginseng is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!