Persistence and degradation of new β-lactam antibiotics in the soil and water environment.

Chemosphere

Department of Agricultural Science, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy.

Published: September 2013

The development of new antibiotics with low environmental persistence is of utmost importance in contrasting phenomena of antibiotic resistance. In this study, the persistence of two newly synthesized monocyclic β-lactam antibiotics: (2R)-1-(methylthio)-4-oxoazetidin-2-yl acetate, P1, and (2R,3R)-3-((1R)-1-(tert-butyldimethylsilanyloxy)ethyl)-1-(methylthio)-4-oxoazetidin-2-yl acetate, P2, has been investigated in water in the pH range 3-9 and in two (calcareous and forest) soils, then compared to amoxicillin, a β-lactam antibiotic used in human and veterinary medicine. P1 and P2 persistence in water was lower than that of amoxicillin with only a few exceptions. P1 hydrolysis was catalyzed at an acidic pH whereas P2 hydrolysis takes place at both acidic and alkaline pH values. P1 persistence in soils depended mainly on their water potential (t1/2: 35.0-70.7d at wilting point; <1d at field capacity) whereas for P2 it was shorter and unaffected by soil water content (t1/2 0.13-2.5d). Several degradation products were detected in soils at both water potentials, deriving partly from hydrolytic pathways and partly from microbial transformation. The higher LogKow value for P2 compared with P1 seemingly confers P2 with high permeability to microbial membranes regardless of soil water content. P1 and P2 persistence in soils at wilting point was shorter than that of amoxicillin, whereas it had the same extent at field capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2013.05.016DOI Listing

Publication Analysis

Top Keywords

β-lactam antibiotics
8
persistence
5
persistence degradation
4
degradation β-lactam
4
antibiotics soil
4
water
4
soil water
4
water environment
4
environment development
4
development antibiotics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!