Introduction: Next-generation scaffolds for bone tissue engineering (BTE) should exhibit the appropriate combination of mechanical support and morphological guidance for cell proliferation and attachment while at the same time serving as matrices for sustained delivery of therapeutic drugs and/or biomolecular signals, such as growth factors. Drug delivery from BTE scaffolds to induce the formation of functional tissues, which may need to vary temporally and spatially, represents a versatile approach to manipulating the local environment for directing cell function and/or to treat common bone diseases or local infection. In addition, drug delivery from BTE is proposed to either increase the expression of tissue inductive factors or to block the expression of others factors that could inhibit bone tissue formation. Composite scaffolds which combine biopolymers and bioactive ceramics in mechanically competent 3D structures, including also organic-inorganic hybrids, are being widely developed for BTE, where the affinity and interaction between biomaterials and therapeutic drugs or biomolecular signals play a decisive role in controlling the release rate.
Areas Covered: This review covers current developments and applications of 3D composite scaffolds for BTE which exhibit the added capability of controlled delivery of therapeutic drugs or growth factors. A summary of drugs and biomolecules incorporated in composite scaffolds and approaches developed to combine biopolymers and bioceramics in composites for drug delivery systems for BTE is presented. Special attention is given to identify the main challenges and unmet needs of current designs and technologies for developing such multifunctional 3D composite scaffolds for BTE.
Expert Opinion: One of the major challenges for developing composite scaffolds for BTE is the incorporation of a drug delivery function of sufficient complexity to be able to induce the release patterns that may be necessary for effective osseointegration, vascularization and bone regeneration. Loading 3D scaffolds with different biomolecular agents should produce a codelivery system with different, predetermined release profiles. It is also envisaged that the number of relevant bioactive agents that can be loaded onto scaffolds will be increased, whilst the composite scaffold design should exploit synergistically the different degradation profiles of the organic and inorganic components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/17425247.2013.808183 | DOI Listing |
Nat Commun
January 2025
College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
Chronic kidney disease (CKD) ultimately causes renal fibrosis and end-stage renal disease, thus seriously threatens human health. However, current medications for CKD and fibrosis are inefficient, which is often due to poor targeting capability to renal tubule. In this study, we discover that biomimetic high-density lipoprotein (bHDL) lipid nanoparticles possess excellent targeting ability to injured tubular epithelial cells by kidney injury molecule-1(KIM-1) mediated internalization.
View Article and Find Full Text PDFTob Control
January 2025
Department of Health Policy and Management, Yale University School of Public Health, New Haven, Connecticut, USA
Objectives: Characterise US residents' exposure to restrictions on sales of flavoured electronic nicotine delivery system (ENDS), cigars and menthol cigarettes across states and time, and assess correlations between these policies.
Methods: From 2022 to 2024, we compiled flavour policy locations from advocacy groups and online searches, located corresponding legal texts and reviewed these to identify policy details, including effective dates. Using census data, we calculated the proportion of state residents covered by each policy quarterly from 2009 to 2024 and estimated correlations between them and cigarette taxes.
BMJ Case Rep
January 2025
Diabetes, Greenlane Hospital, Auckland, Auckland, New Zealand.
A woman in her 40s presented with severe post-bariatric hypoglycaemia that persisted despite nutritional therapy and pharmacological therapy with acarbose and subcutaneous octreotide with meals. The nutritional limitations were difficult to sustain, and she developed adverse effects to the pharmacological therapy, and hence, doses could not be increased. She was subsequently treated with subcutaneous octreotide via an insulin pump, with a continuous basal rate and additional bolus doses with meals.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland. Electronic address:
Lignocellulosic biomass represents one of the most abundant renewable biological resources on earth. Despite its current underutilization as a source of high-value chemicals, it has promising applications in biomedical and other fields. Presently, lignocellulose is predominantly transformed into high-value-added products, e.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Physics, Kharazmi University, Tehran, Iran; Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:
Colorectal cancer (CRC) remains a significant public health concern, emphasizing the need for innovative therapeutic strategies to improve patient outcomes. This study aimed to develop a highly efficient nanocarrier for targeted drug delivery, enhancing drug efficacy while minimizing concentrations and limiting adverse effects. We synthesized protein-based β-lactoglobulin (βlg) nanoparticles (NPs), loaded with 5-fluorouracil (5-FU) and sodium butyrate (NaB), and further functionalized with folic acid (FA) for specific targeting of folate receptor-positive CRC cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!