Understanding which genes have evolved rapidly with the recent tree speciation in arid habitats can provide valuable insights into different adaptation mechanisms. We employed a comparative evolutionary analysis of expressed sequence tags (ESTs) from two desert poplars, Populus pruinosa and P. euphratica, which diverged in the recent past. Following an approach taken previously with P. euphratica, we conducted a deep transcriptomic analysis of P. pruinosa. To maximize representation of conditional transcripts, mRNA was obtained from living tissues of two types of callus and desert-grown trees. De novo assembly generated 114,866 high-quality unique sequences using Solexa sequence data. Following assembly we were able to identify, with high confidence, 2859 orthologous sequence pairs between the two species. Based on the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions, we identified a total of 84 (2.9%) ortholog pairs exhibiting rapid evolution with signs of strong selection (Ka/Ks>1). Genes homologous to these ortholog pairs in model species are mainly involved in 'responses to stress', 'ubiquitin-dependent protein catabolic processes', and 'biological regulation'. Finally, we examined the expression patterns of candidate genes with rapid evolution in response to salt stress. Only one pair of orthologs up-regulated their expression in both species while three and four genes were found to up-regulated in P. pruinosa and in P. euphratica respectively. Our findings together suggest that the genes at the same category or network but with differentiated expressions or functions may have evolved rapidly during adaptive divergence of the two species to differentiated salty desert habitats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679102 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066370 | PLOS |
Plants (Basel)
January 2025
College of Ecology and Environment, Xinjiang University, Urumqi 830046, China.
The characteristics of heartwood and sapwood not only reflect tree growth and site quality but also provide insights into habitat changes. This study examines the natural Oliv. forest in the Arghan section of the lower Tarim River, comparing the heartwood and sapwood characteristics of at different distances from the river, as well as at varying trunk heights and diameters at breast height (DBH).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China.
Oliv. typically has four kinds of heteromorphic leaves: linear (Li), lanceolate (La), ovate (Ov) and broad ovate (Bo). Heteromorphic leaves help adapt to extreme desert environments and further contribute to protection against land desertification in Northwest China.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China.
All multicellular organisms undergo senescence, but the continuous division of the vascular cambium in plants enables certain tree species to survive for hundreds or even thousands of years. Previous studies have focused on the development of the vascular cambium, but the mechanisms regulating age-related changes remain poorly understood. This study investigated age-related changes in the vascular cambium of trees aged 50 to 350 years.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
, an ectomycorrhizal fungus, forms a symbiotic relationship with , a rare and endangered species crucial to desert riparian ecosystems. In this study, endofungal bacteria (EFBs) within the fruiting bodies of were confirmed by a polyphasic approach, including genomic sequencing, real-time quantitative PCR targeting the 16S rRNA gene, full-length and next-generation sequencing (NGS) of the 16S rRNA gene, and culture methods. The genera , , , and were abundant in the EFBs of fruiting bodies associated with three hosts and were consistently present across different developmental stages.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China.
is a key community-building species in the desert riparian forests of Northwest China, exhibiting exceptional resistance to stress and playing a vital role in soil and water conservation as well as maintaining ecological balance in arid regions. To investigate the ecological processes underlying the composition of communities and to identify their community construction mechanisms, this study analyses the species diversity and phylogenetic diversity of 58 communities, exploring their assembly processes and key influencing factors. This research aims to elucidate the relationship between community structure from the perspective of species evolution and analyse the construction mechanisms of communities across different clusters in arid environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!