Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679033PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066087PLOS

Publication Analysis

Top Keywords

protein synthesis
16
translation initiation
8
initiation factors
8
initiation
6
protein
5
eukaryotic initiation
4
initiation factor
4
factor transcriptional
4
control
4
transcriptional control
4

Similar Publications

The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.

View Article and Find Full Text PDF

A Comprehensive Review of the Development and Therapeutic Use of Antivirals in Flavivirus Infection.

Viruses

January 2025

Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA.

Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy.

View Article and Find Full Text PDF

De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.

View Article and Find Full Text PDF

In this study, we revealed a critical role of eukaryotic elongation factor-2 kinase (eEF-2K), a negative regulator of protein synthesis, in regulating T cells during vaccinia virus (VACV) infection. We found that eEF-2K-deficient (eEF-2K⁻/⁻) mice exhibited a significantly higher proportion of VACV-specific effector CD8 T cells without compromising the development of VACV-specific memory CD8 T cells. RNA sequencing demonstrated that eEF-2K⁻/⁻ VACV-specific effector CD8 T cells had enhanced functionality, which improves their capacity to combat viral infection during the effector phase.

View Article and Find Full Text PDF

(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!