We have recently identified the enzyme NMN deamidase (PncC), which plays a key role in the regeneration of NAD in bacteria by recycling back to the coenzyme the pyridine by-products of its non redox consumption. In several bacterial species, PncC is fused to a COG1058 domain of unknown function, highly conserved and widely distributed in all living organisms. Here, we demonstrate that the PncC-fused domain is endowed with a novel Co(+2)- and K(+)-dependent ADP-ribose pyrophosphatase activity, and discuss the functional connection of such an activity with NAD recycling. An in-depth phylogenetic analysis of the COG1058 domain evidenced that in most bacterial species it is fused to PncC, while in α- and some δ-proteobacteria, as well as in archaea and fungi, it occurs as a stand-alone protein. Notably, in mammals and plants it is fused to FAD synthase. We extended the enzymatic characterization to a representative bacterial single-domain protein, which resulted to be a more versatile ADP-ribose pyrophosphatase, active also towards diadenosine 5'-diphosphate and FAD. Multiple sequence alignment analysis, and superposition of the available three-dimensional structure of an archaeal COG1058 member with the structure of the enzyme MoeA of the molybdenum cofactor biosynthesis, allowed identification of residues likely involved in catalysis. Their role has been confirmed by site-directed mutagenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3680494PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065595PLOS

Publication Analysis

Top Keywords

nad recycling
8
bacterial species
8
cog1058 domain
8
adp-ribose pyrophosphatase
8
genomics-guided analysis
4
analysis nad
4
recycling yields
4
yields functional
4
functional elucidation
4
cog1058
4

Similar Publications

Background: Biocatalysis offers a potentially greener alternative to chemical processes. For biocatalytic systems requiring cofactor recycling, hydrogen emerges as an attractive reducing agent. Hydrogen is attractive because all the electrons can be fully transferred to the product, and it can be efficiently produced from water using renewable electricity.

View Article and Find Full Text PDF

Nano-AlO derived from recyclable sources emerges as a promising sustainable solution for enhancing diesel engine efficiency while mitigating emissions. However, a lack of an in-depth understanding of the health hazard aspect still challenges its commercial applications. To this end, nano-AlO/diesel (NAD) blends prepared via ultrasonic homogenization were experimentally and analytically investigated under various injection timings and excess air coefficients to explore the potential of nano-AlO for balancing energy performance and emissions.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a complex neurological disorder marked by neuroinflammation and demyelination. Understanding its molecular basis is vital for developing effective treatments. This study aims to elucidate the molecular progression of MS using multiomics and network-based approach.

View Article and Find Full Text PDF

Electrochemical cofactor recycling of bacterial microcompartments.

Proc Natl Acad Sci U S A

December 2024

MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824.

Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B) reductase and, curiously, found it in many unrelated BMC types that do not employ B cofactors.

View Article and Find Full Text PDF

Biological systems can directly upgrade carbon dioxide (CO) into chemicals. The CO fixation rate of autotrophic organisms, however, is too slow for industrial utility, and the breadth of engineered metabolic pathways for the synthesis of value-added chemicals is too limited. Biotechnology workhorse organisms with extensively engineered metabolic pathways have recently been engineered for CO fixation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!