Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Salinity and heavy metal stress are challenging problems in agriculture. Here we report the plant growth promoting ability of three moderate halophiles, Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6, in presence of both salinity and heavy metal stress. Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6 can tolerate 25, 21, and 29% NaCl, respectively and grow in presence of 1 mM cobalt, cadmium, and nickel and 0.04 mM mercury and 0.03 mM silver. Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6 produced 152.5, 95.3, and 167.3 µg/ml indole acetic acid (IAA) and could solubilize 61, 53, and 75 parts per million (ppm) phosphate, respectively in the presence of 15% NaCl. The production of IAA and solubilization of phosphate was well retained in the presence of salinity and heavy metals like 1 mM cadmium, 0.7 mM nickel, 0.04 mM mercury, and 0.03 mM silver. Besides, the strains showed amylase and protease activities and could produce hydrogen cyanide and ammonia in presence of salinity and heavy metals. A mixture of three strains enhanced the root growth of Sesuvium portulacastrum under saline and heavy metal stress, where the root length increased nearly 4.5 ± 0.6 times and root dry weight increased 5.4 ± 0.5 times as compared to control. These strains can thus be useful in microbial assisted phytoremediation of polluted saline soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jobm.201200778 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!