Our objective was to determine using electron microscopy how nonagouti (a), lethal yellow (Ay), and albino (c2J) genes affect the program of mouse hairbulb melanosome differentiation; 1,921 hairbulb melanosomes from four genotypes (a/a C/C = B,Ay/a C/C = Y, a/a c2J/c2J = BA, and Ay/a c2J/c2J = YA) were scored for developmental stage, length, and width. Qualitative and quantitative electron microscopy revealed the following. An albino locus-induced diminution of melanosome size suggests that the albino locus is involved in structural features of melanosomes not directly related to the synthesis and deployment of tyrosinase. Ratio data on melanosome length-to-width confirm that the agouti locus determines melanosome shape, either spherical or elliptical; melanization is not required for melanosomes to achieve their agouti-locus-determined shapes. YA (Ay/a c2J/c2J) melanosomes, characterized by poorly organized matrices, absence of active tyrosinase, unusually large membrane invaginations, and significantly smaller dimensions than those of BA (a/a c2J/c2J), showed additive effects of both Ay and c2J alleles. These data suggest that the albino locus plays a structural as well as functional (tyrosinase) role in the differentiation of mouse hairbulb melanosomes. The agouti locus, even in the absence of melanization, directs melanosome shape either via synthesis and deployment of agouti-locus-encoded matrix proteins or by other structural factors. The additive effects of Ay and c2J alleles in compound YA mutants document the importance of specific interactions both functional and structural between agouti and albino loci.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0749.1990.tb00257.xDOI Listing

Publication Analysis

Top Keywords

albino locus
12
agouti albino
8
electron microscopy
8
mouse hairbulb
8
hairbulb melanosomes
8
a/a c2j/c2j
8
ay/a c2j/c2j
8
synthesis deployment
8
agouti locus
8
melanosome shape
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!