Herein, we present three imidazo[1,2-a]pyridin-2(3 H)-one derivatives that are diamagnetic in solution, but paramagnetic in the solid state, possibly owing to a stacking-induced formation of phenoxide-type radicals. Notably, a larger bathochromic shift of the absorption (even up to the near- infrared region) of these three compounds was observed in the solid state than in solution, which was attributable to the ordered columnar stacking arrangements or their single-electron character as radicals in the solid state. Interestingly, compared to that in solution, (E)-3-(pyridin-4'-ylmethylene)imidazo[1,2-a]pyridine 2(3 H)-one displayed a largely red-shifted emission (centered at 660 nm, with tailing above 800 nm) in the solid state. A larger bathochromic shift (260 nm) of the emission is an indication of better order and tight stacking in the solid state, which is brought about by the rigid and polar acceptor. These three compounds also reveal different magnetic susceptibilities at 300 K, thus implying that they possess various columnar stacking structures. Most interestingly, these three radicals exhibit unusual ferromagnetic-to-antiferromagnetic phase transitions, which can be attributed to anisotropic contraction and non-uniform slippage of the columnar stacking chains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.201300400 | DOI Listing |
Chem Sci
January 2025
State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
In overcoming the barrier of rapid Li transfer in lithium-ion batteries at extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tuning the solvation structure and designing a kinetically stable electrode-electrolyte interface to achieve high-rate charging and discharging remain a challenge. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize stability and the robust solid electrolyte interface film (SEI), realizing a rapid Li transfer process and the structural integrity of electrode materials.
View Article and Find Full Text PDFChina CDC Wkly
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
Residual antimicrobial agents in wastewater and solid waste from antimicrobial manufacturing facilities can potentially contaminate environments. The World Health Organization has established technical guidelines for managing antimicrobial resistance (AMR) in pharmaceutical wastewater and solid waste. However, the scarcity of publicly available data on antimicrobial manufacturing processes impedes the development of effective mitigation strategies.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Department of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada.
Amorphous solids form an enormous and underutilized class of materials. In order to drive the discovery of new useful amorphous materials further we need to achieve a closer convergence between computational and experimental methods. In this review, we highlight some of the important gaps between computational simulations and experiments, discuss popular state-of-the-art computational techniques such as the Activation Relaxation Technique (ARTn) and Reverse Monte Carlo (RMC), and introduce more recent advances: machine learning interatomic potentials (MLIPs) and generative machine learning for simulations of amorphous matter (e.
View Article and Find Full Text PDFInd Eng Chem Res
January 2025
Department of Chemistry, Physics, and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States.
An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.
View Article and Find Full Text PDFFood Chem X
January 2025
School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
1-Propanol is an important aroma compound in sauce-flavor Baijiu. However, the mechanism by which it affects the aroma of sauce-flavor Baijiu has not been fully investigated. In this study, an instrumental and perceptual analysis was employed to assess the impact of 1-propanol on the flavor and volatile compounds in sauce-flavor Baijiu.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!