Chitin, present in crustacean shells, insects, and fungi, is the second most plentiful natural organic fiber after wood. To effectively use chitin in a cost-saving and environmentally friendly way in aquaculture, crustacean shells (e.g., shrimp-shell meal) are supplemented into aquafeed after degradation by chemical methods. Herein, we describe a chitinase from Aeromonas veronii B565, designated ChiB565, which potently degrades shrimp-shell chitin and resists proteolysis. We isolated recombinant ChiB565 of the expected molecular mass in large yield from Pichia pastoris. ChiB565 is optimally active at pH 5.0 and 50 °C and stable between pH 4.5 and 9.0 at 50 °C and below. Compared with the commercial chitinase C-6137, which cannot degrade shrimp-shell chitin, ChiB565 hydrolyzes shrimp-shell chitin in addition to colloidal chitin, powdered chitin, and β-1,3-1,4-glucan. The optimal enzyme concentration and reaction time for in vitro degradation of 0.1 g of powdered shrimp shell are 30 U of ChiB565 and 3 h, respectively. A synergistic protein-release effect occurred when ChiB565 and trypsin were incubated in vitro with shrimp shells. Tilapia were fed an experimental diet containing 5% (w/w) shrimp bran and 16.2 U/kg ChiB565, which significantly improved growth and feed conversion compared with a control diet lacking ChiB565. Dietary ChiB565 enhanced nitrogen digestibility and downregulated intestinal IL-1β expression. The immunologically relevant protective effects of dietary ChiB565 were also observed for 2 to 3 days following exposure to pathogenic Aeromonas hydrophila.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-013-5023-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!