Effects of supporting materials during vitrification procedure on the morphologies of preantral follicles of pig ovaries were assessed. Ovarian cortical sections of prepubertal pigs were randomly allocated to 5 groups. The sections were vitrified ultrarapidly with 5 different vitrification devices. The sections were put on 4 fine needles (Cryosupport), on a thin copper plate, or on a carbon graphite sheet or were sandwiched between copper plates or between carbon graphite sheets before cooling. The cooling and warming rates with the graphite sheets were significantly higher than those with the copper plates (P<0.05). A total of 3,064 follicles were analyzed following HE staining after vitrification with 5 different devices. The morphologies follicles vitrified on the Cryosupport or on the graphite sheet were well preserved compared with those vitrified on the copper plate or between copper plates (P<0.01). The morphologies of follicles vitrified between copper plates were mostly damaged (P<0.05). Taken together, good thermally conducting material supports follicle morphologies of ovaries cryopreserved with ultrarapid vitrification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934124PMC
http://dx.doi.org/10.1262/jrd.2013-012DOI Listing

Publication Analysis

Top Keywords

carbon graphite
8
copper plates
8
graphite sheets
8
good thermally
4
thermally conducting
4
conducting material
4
material supports
4
supports follicle
4
follicle morphologies
4
morphologies porcine
4

Similar Publications

Graphitic carbon nitride (g-C3N4) has gained significant attention as a promising nonmetallic semiconductor photocatalyst due to its photochemical stability, favorable electronic properties, and efficient light absorption. Nevertheless, its practical applications are hindered by limitations such as low specific surface area, rapid recombination of photogenerated charge carriers, poor electrical conductivity, and restricted photo-response ranges. This review explores recent advancements in the synthesis, modification and application of g-C3N4 and its nanocomposites with a focus on addressing these challenges.

View Article and Find Full Text PDF

Quantitative profiling and mapping of small molecules by laser desorption/ionization mass spectrometry: combinations of carbon-based nano-matrices and sample preparation protocols.

Analyst

January 2025

Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China.

The choices of matrices and protocols for sample deposition are critical factors, which impact each other in the matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). Previous reports on MALDI MS matrices have only compared their performances in terms of their MS signal intensities and provided optical microphotos or MALDI MS images of sample spots but typically lacked quantitative evaluation. Therefore, there is an urgent need to develop a multivariate model to evaluate the performance of different combinations of matrices and sample protocols.

View Article and Find Full Text PDF

Intrinsic Mechanical Effects on the Activation of Carbon Catalysts.

J Am Chem Soc

January 2025

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.

The mechanical effects on carbon-based metal-free catalysts (C-MFCs) have rarely been explored, despite the global interest in C-MFCs as substitutes for noble metal catalysts. Stress is ubiquitous, whereas its dedicated study is severely restricted due to its frequent entanglement with other structural variables, such as dopants, defects, and interfaces in catalysis. Herein, we report a proof-of-concept study by establishing a platform to continuously apply strain to a highly oriented pyrolytic graphite (HOPG) lamina, simultaneously collecting electrochemical signals.

View Article and Find Full Text PDF

Constructing Accessible Closed Nanopores in Coal-Derived Hard Carbon for Sodium-Ion Batteries.

Small

January 2025

Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China.

Hard carbon (HC) materials are suitable anodes for sodium-ion batteries (SIBs) but still suffer from insufficient initial Coulombic efficiency (ICE). Promoting sodium storage via the pore filling mechanism is an effective way to improve the ICE, and the key here is regulating the pore structures of HC. In this work, coal-derived HC is successfully engineered with abundant accessible closed nanopores by treating the coal precursors with a facile destructive oxidation strategy.

View Article and Find Full Text PDF

Five commercially available cut-resistant gloves were sourced from four different worldwide manufacturers which were advertised to contain graphene. A method was developed to assess the fibers composing each glove, including dissolution of the constituent fibers using sulfuric acid or liquid paraffin at elevated temperature, to extract and analyze particle additives. Scanning electron microscopy with energy-dispersive X-ray spectroscopy was applied to fibers and extracted particles for morphological and elemental analysis; Raman spectroscopy was applied to discern the composition of carbonaceous materials for the ultimate purpose of identifying any graphenic additives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!