Liposomes loaded with quantum dots for ultrasensitive on-site determination of aflatoxin M1 in milk products.

Anal Bioanal Chem

Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium,

Published: September 2013

A quantitative fluorescence-labeled immunosorbent assay and qualitative on-site column tests were developed for the determination of aflatoxin M1 in milk products. The use of liposomes loaded with quantum dots as a label significantly increased the assay sensitivity by encapsulating multiple quantum dots in a single liposome and, therefore, amplifying the analytical signal. Two different techniques were compared to obtain aflatoxin-protein conjugates, used for further coupling with the liposomes. The influence of nonspecific interactions of the liposome-labeled conjugates obtained with the surface of microtiter plates and column cartridges was evaluated and discussed. The limit of detection for fluorescence-labeled immunosorbent assay was 0.014 μg kg(-1). For qualitative on-site tests, the cutoff was set at 0.05μg kg(-1), taking into account the EU maximum level for aflatoxin M1 in raw milk, heat-treated milk, and milk for the manufacture of milk-based products. The direct addition of labeled conjugate to the milk samples resulted in an additional decrease of analysis time. An intralaboratory validation was performed with sterilized milk and cream samples artificially spiked with aflatoxin M1 at concentrations less than, equal to and greater than the cutoff level. It is shown that milk products can be analyzed without any sample preparation, just diluted with the buffer. The rates for false-positive and false-negative results were below 5% (2.6% and 3.3%, respectively).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-013-7096-6DOI Listing

Publication Analysis

Top Keywords

quantum dots
12
milk products
12
liposomes loaded
8
loaded quantum
8
determination aflatoxin
8
milk
8
aflatoxin milk
8
fluorescence-labeled immunosorbent
8
immunosorbent assay
8
qualitative on-site
8

Similar Publications

Background: Creatinine is a small molecule disease biomarker that reflects kidney function, accurate and effective detection of creatinine will play an important role in the prevention and treatment of diseases. Currently, commonly used creatinine detection methods are limited by expensive instruments, complex sample preparation, many interference factors from biological samples, and environmental factors that can affect the accuracy of the measurement. Therefore, developing a fast, simple, inexpensive, sensitive analysis method that can eliminate background interference and provide multi-detection modes has strong attraction and value.

View Article and Find Full Text PDF

Self-powered PEC platform with large and stable photocurrent for blocker-free sensitive assay of Caspase-3 activity based on CdInS/CdS QDs anode and NH-MIL-125(Ti)@MAPbI/Au NPs cathode.

Biosens Bioelectron

March 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:

The diagnosis of apoptosis is of particular importance for assessing apoptosis-related disease progression and improving the therapy efficiency. Caspase-3 is the most frequently activated cysteine protease and a key mediator of cell apoptosis, therefore, its activity assay is vital. Here, by encapsulating of MAPbI in NH-MIL-125(Ti) and constructing "Z-scheme" structure between CdInS microspheres and CdS quantum dots (QDs) to obtain high-photoelectrochemical (PEC)-stability and large-photocurrent NH-MIL-125(Ti)@MAPbI/Au NPs photocathode and CdInS/CdS QDs photoanode, respectively, a new dual-photoelectrode self-powered PEC platform was constructed for highly sensitive and blocker-free assay of caspase-3 activity.

View Article and Find Full Text PDF

Novel fluorescence-based and portable detection platforms using nitrogen-doped carbon dots for environmental monitoring of dichloran fungicide.

Spectrochim Acta A Mol Biomol Spectrosc

March 2025

Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

A novel fluorescence sensor utilizing label-free nitrogen self-doped carbon dots (NCDs) was developed for the sensitive, selective, and rapid determination of dichloran fungicide, popularly used in agricultural and horticultural fields. The NCDs were prepared from maleic anhydride and diethylenetriamine via a one-step pyrolysis process. They demonstrated strong blue fluorescence emission with a quantum yield of 12 %.

View Article and Find Full Text PDF

Spectrofluorimetric determination of bupropion using N,S co-doped carbon quantum dots: Mechanistic investigation, response surface optimization, and application to pharmaceutical formulations, spiked plasma and environmental samples.

Spectrochim Acta A Mol Biomol Spectrosc

March 2025

Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia. Electronic address:

In this study, a novel analytical method was developed for the determination of bupropion in pharmaceutical formulations and spiked plasma samples using N, S co-doped carbon quantum dots (N,S CQDs) as a fluorescent probe. The N,S CQDs were thoroughly characterized and its optical properties were investigated. The developed N,S CQDs exhibited blue emission at 435 nm upon excitation at 357 nm.

View Article and Find Full Text PDF

This study investigates the synthesis, characterization, and anticancer effects of carbon quantum dots (CQDs) derived from Bellardia trixago. The CQDs were analyzed using Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). TEM results revealed that the CQDs have a spherical morphology and exhibit a layered structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!