Variations of dietary salt and fluid modulate calcium and magnesium transport in the renal distal tubule.

Nephron Physiol

Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Kaohsiung, Taiwan.

Published: January 2014

Background: The renal distal tubule fine-tunes renal epithelial calcium transport. Dietary intake of salt and fluid varies day-to-day and the kidney adapts accordingly to maintain homeostasis. The alternations in salt and fluid balance affect calcium and magnesium transport in the distal tubule, but the mechanisms are not fully understood.

Methods: Sprague-Dawley rats were grouped into high-salt, low-salt and dehydration treatment. Daily intake, water consumption and urine output were recorded. At the end of the experiment, blood and urine samples were collected for hormonal and biochemical tests. Genetic analysis, immunoblotting and immunofluorescence studies were then performed to assess the alterations of calcium and magnesium transport-related molecules.

Results: High-salt treatment increased urinary sodium, calcium and magnesium excretion. Low-salt treatment and dehydration were associated with decreased urinary excretion of all electrolytes. High-salt treatment was associated with increased intact parathyroid hormone levels. A significant increase in gene expression of TRPV5, TRPV6, calbindin-D28k and TRPM6 was found during high-salt treatment, while low salt and dehydration diminished expression. These findings were confirmed with immunofluorescence studies. High-salt and low-salt intake or dehydration did not cause any significant changes in WNK1, WNK3 and WNK4.

Conclusions: Alternations in salt and water intake affect renal calcium and magnesium handling. High-salt intake increases the distal delivery of the divalent cations which upregulates distal tubule calcium and magnesium transport molecules, while the opposite effects are associated with low-salt intake or dehydration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007268PMC
http://dx.doi.org/10.1159/000353199DOI Listing

Publication Analysis

Top Keywords

calcium magnesium
24
distal tubule
16
salt fluid
12
magnesium transport
12
high-salt treatment
12
renal distal
8
alternations salt
8
high-salt low-salt
8
immunofluorescence studies
8
low-salt intake
8

Similar Publications

Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.

View Article and Find Full Text PDF

One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.

View Article and Find Full Text PDF

This study investigates the seasonal variations in the elemental composition of five economically valuable fish species from Bozcaada, North Aegean: red seabream (), gilthead seabream (), saddled seabream (), white seabream (), and common dentex (), with a focus on both essential minerals and toxic metals. Fish samples ( = 10 per species per season) were collected across four seasons, and their weights and lengths were recorded. The concentrations of elements such as calcium, potassium, magnesium, phosphorus, copper, iron, manganese, zinc, chromium, nickel, selenium, cadmium, and mercury were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

View Article and Find Full Text PDF

, an edible wild plant, is valued for its distinctive flavor and health-promoting properties. This study examines the proximate composition, bioactive compounds, and in vitro biological activities of seven leaves (, , , , var. , and ).

View Article and Find Full Text PDF

Objectives: The aim of this in-vitro study was to evaluate the effects of antacid gastric syrups on the surface roughness and microhardness of restorative dental materials.

Materials And Methods: Three different composite resins, nanohybrid, microhybrid and giomer, and four antacid gastric syrups were used in the study. A total of 150 samples were obtained by preparing 50 (10 mm x 2 mm) disk-shaped samples of each composite type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!