Microwave pyrolysis of rice straw: products, mechanism, and kinetics.

Bioresour Technol

Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei 106, Taiwan, ROC.

Published: August 2013

Rice straw is an abundant resource for the production of biofuels and bio-based products. How to convert the recalcitrant lignocellulose effectually is a critical issue. The objective of this study was to investigate the products, mechanism, and kinetics of rice straw pyrolysis by using microwave heating. The highest energy densification ratio of solid residues was achieved at the microwave power level of 300 W. The atomic H/C and O/C ratios of solid residues were much lower than those of rice straw. The primary components of gaseous product were CO, H2, CO2, and CH4, whose molecular fractions were 57%, 21%, 14%, and 8%, respectively. The more gaseous product and the less solid residues were obtained at higher microwave power levels, while the liquid production remained the same and showed a maximum of about 50 wt.%. The kinetic parameters of rice straw pyrolysis were increased with increasing microwave power level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.05.093DOI Listing

Publication Analysis

Top Keywords

rice straw
20
solid residues
12
microwave power
12
products mechanism
8
mechanism kinetics
8
kinetics rice
8
straw pyrolysis
8
power level
8
gaseous product
8
microwave
5

Similar Publications

Engineering the biosynthetic pathway of bacterial cellulose in rice to improve the performance of straw-derived paper.

Plant Commun

January 2025

Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding,China, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms ,Ministry of Agriculture and Rural Affairs, China. Electronic address:

View Article and Find Full Text PDF

The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).

View Article and Find Full Text PDF

Ensuring the mechanical performance of backfill materials while reducing cementation costs is a key challenge in mine backfill research. To address this, fiber materials such as polypropylene (PP) fiber and rice straw (RS) fiber have been incorporated into cement-based mixtures for mine backfilling. This study investigates the effects of PP and RS fibers on the mechanical properties, flow characteristics, and microstructure of Tailings and Wasted Stone Mixed Backfill (TWSMB).

View Article and Find Full Text PDF

Effects of Different Nitrogen Fertilizer Application Rates on Soil Microbial Structure in Paddy Soil When Combined with Rice Straw Return.

Microorganisms

January 2025

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.

Metagenomic sequencing of the microbial soil community was used to assess the effect of various nitrogen fertilizer treatments in combination with constant rice straw return to the soil in the tiller layer of Northeast China's black paddy soil used for rice production. Here, we investigated changes in the composition, diversity, and structure of soil microbial communities in the soil treated with four amounts of nitrogen fertilizers (53, 93, 133, and 173 kg/ha) applied to the soil under a constant straw return of 7500 kg/ha, with a control not receiving N. The relationships between soil microbial community structure and soil physical and chemical properties were determined.

View Article and Find Full Text PDF

With the increasing demand for enhancing livestock production performance and optimizing feed efficiency, this study aimed to investigate the effects of fermented total mixed ration (FTMR) containing different proportions of rice straw and sheath and leaves of on systemic nutrient metabolism and oxidative metabolism under host genetic regulation and on growth performance of heifers. A total of 157 heifers aged 7-8 months were selected, and their hair was collected for whole-genome sequencing. They were randomly assigned into four groups of 18 to 21 cattle each and fed FTMR containing varying levels of rice straw (21% in LSF, 28% in MSF, 35% in HSF) or 31% sheath and leaves of (ZF) for a two-month period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!