Calpain (intracellular Ca(2+)-dependent protease) and calpastatin (calpain specific endogenous inhibitor) are widely distributed in biological systems, and have been implicated in many cellular physiological and pathological processes. Calpastatin level is of central importance to the control of calpain activity. We demonstrated for the first time that calpastatin is overexpressed in mycoplasma-contaminated cultured cells (SH-SY5Y cells that are infected by a strain of Mycoplasma hyorhinis (NDMh)). We have found that the calpastatin-upregulating activity resides in the mycoplasmal membrane lipoproteins, and is associated with NF-κB activation. Calpain-promoted proteolysis is attenuated in the NDMh lipoprotein-treated cells. Here we show that the NDMh lipoproteins promoted an increase in calpastatin in SH-SY5Y cells via the TLR2/TAK1/NF-κB pathway. The synthetic mycoplasmal lipopeptide MALP-2 and the bacterial lipopeptide PAM3CSK4 (TLR2 agonists) also promoted calpastatin upregulation. LPS (TLR4 agonist) activated NF-κB without calpastatin increase in the cell. In contrast, lipoteichoic acid (TLR2 agonist) upregulated calpastatin not via NF-κB activation, but via the MEK1/ELK1 pathway. Zymosan and peptidoglycan, TLR2 agonists that lack lipids, did not induce calpastatin upregulation. Cell treatment with a calpastatin-upregulating agonist (lipoteichoic acid) led to the attenuation of Ca(2+)-promoted calpain activity, whereas agonists that do not upregulate calpastatin (LPS, Zymosan) were ineffective. Overall, the results indicate that in these non-immune cells, calpastatin is upregulated by TLR2-agonists containing lipids, with more than one downstream pathway involved. Such agonists may be useful for studying mechanisms and factors involved in calpastatin regulation. In addition, suitable TLR2 agonists may be of interest in devising treatments for pathological processes involving excessive calpain activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2013.06.006 | DOI Listing |
Meat Sci
November 2024
Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States. Electronic address:
This study assessed postmortem proteolysis over 14 d in bovine Masseter (MS), Longissimus thoracis (LT), and Cutaneous trunci (CT) muscles. First, the metabolic, contractile, and connective tissue properties were characterized to establish their intrinsic differences. The MS contained the highest levels of oxidative markers and myosin heavy chain-I (MyHC-I), whereas the CT possessed the greatest glycolytic capacity, MyHC-IIx, and connective tissue proteins (P < 0.
View Article and Find Full Text PDFVet World
October 2024
Department of Animal Science, Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue City, Vietnam.
J Cardiovasc Dev Dis
November 2024
Department of Vascular Surgery, University Hospital Zurich, 8091 Zurich, Switzerland.
Background: This study aims to identify circulating biomarkers by using proteomic analysis associated with sac shrinkage or expansion in patients undergoing endovascular aneurysm repair (EVAR) for abdominal aortic aneurysms (AAAs).
Methods: Plasma samples were analysed from 32 patients treated with EVAR between 10/2009 and 10/2020. Patients were divided into two groups based on postoperative sac behaviour: sac shrinkage (≥5 mm reduction) and no shrinkage (stabilisation or expansion).
Meat Sci
February 2025
School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Electronic address:
An in vitro assay was developed to study protease activity during the maturation of beef postmortem. Myofibrils were purified from the semitendinosus and used as a sentinel for assessing the activity of endogenous proteases in longissimus thoracis et lumborum (LTL) and the extensor carpi radialis (ER) over time postmortem in beef carcasses. Samples were collected from each muscle at 0, 1, 2, 7, and 14 d of aging and snap frozen.
View Article and Find Full Text PDFLipids Health Dis
November 2024
Department of Internal Medicine-Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Triple-negative breast cancer (TNBC) continues to pose a significant obstacle in the field of oncology. Dysregulation of lipid metabolism, notably upregulated ketogenesis, has emerged as a hallmark of TNBC, yet its role in metastasis has been elusive. Here, by utilizing clinical specimens and experimental models, the study demonstrates that increased ketogenesis fosters TNBC metastasis by promoting the up-regulation of β-hydroxybutyrate (β-OHB), a key ketone body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!