Biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) starts with its cotranslational insertion into the membrane of the endoplasmic reticulum (ER) and core glycosylation. These initial events are followed by a complex succession of steps with the main goal of checking the overall quality of CFTR conformation in order to promote its exit from the ER through the secretory pathway. Failure to pass the various checkpoints of the ER quality control targets the most frequent disease-causing mutant protein (F508del-CFTR) for premature degradation. For wild-type CFTR that exits the ER, trafficking through the Golgi is the major site for glycan processing, although nonconventional trafficking pathways have also been described for CFTR. Once CFTR is at the cell surface, its stability is also controlled by multiple protein interactors, including Rab proteins, Rho small GTPases, and PDZ proteins. These regulate not only anterograde trafficking to the cell surface, but also endocytosis and recycling, thus achieving fine and tight modulation of CFTR plasma membrane levels. Exciting recent data have related autophagy and epithelial differentiation to the regulation of CFTR trafficking. Herein, we review the various checkpoints of the complex quality control along the secretory trafficking pathway and the associated pathways that are starting to be explored for the benefit of cystic fibrosis patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.12392 | DOI Listing |
Background: Due to its increasing prevalence and suboptimal treatment, non-tuberculous mycobacterial (NTM) infection is an emerging problem in patients with cystic fibrosis (CF). Detailed description of regional NTM prevalence and distribution, and identification of predictors of NTM acquisition in CF are essential to optimise treatment and surveillance guidelines.
Methods: A retrospective, multi-center analysis was conducted between the years 2020 and 2022 on data from 232 adult patients registered in the Hungarian CF Registry in 2022.
Introduction: Living with a chronic disease impacts many aspects of life, including the ability to participate in activities that enable interactions with others in society, that is, social participation (SP). Despite efforts to monitor the quality of care and life of chronically ill people in Belgium, no disease-specific patient-reported measures (PRMs) have been used. These tools are essential to understand SP and to develop evidence-based recommendations to support its improvement.
View Article and Find Full Text PDFBMJ Open
December 2024
Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
Introduction: Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, primarily affecting the respiratory and digestive systems. Respiratory rehabilitation techniques play a crucial role in managing pulmonary symptoms and maintaining lung function in CF patients. Although various techniques have been developed and applied, there is currently no globally recognised optimal respiratory rehabilitation regimen.
View Article and Find Full Text PDFSci Rep
January 2025
Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
Approaches to mitigate the severity of infections and of immune responses are still needed for the treatment of cystic fibrosis (CF) even with the success of highly effective modulator therapies. Previous studies identified reduced levels of melatonin in a CF mouse model related to circadian rhythm dysregulation. Melatonin is known to have immunomodulatory properties and it was hypothesized that treatment with melatonin would improve responses to bacterial infection in CF mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!