Background: Salvia splendens Ker-Gawl, most commonly used in China to add a splash of brilliant color to the surroundings during the warm season, is subject to heat stress, which can greatly affect its growth and yield.
Results: To gain a comprehensive understanding of heat-tolerance mechanisms of S. splendens, we assessed the heat-stress responses and characterized the proteomes of leaves from two varieties, Vista (heat resistant) and King (heat sensitive). Denaturing two-dimensional gel electrophoresis (2-DE) and tandem mass spectrometry were used to identify heat-responsive proteins. Heat stress induced the reversible inactivation of photosystem II reaction centers and increased the amounts of antioxidative enzymes, thereby decreasing oxidative damage. Vista leaves had a much greater ability than King leaves to develop light-protective and oxygen-scavenging systems in response to heat stress. More than 1213 leaf proteome spots were reproducibly detected in the gels, with a total of 33 proteins in each leaf type differentially regulated when Salvia splendens were heat stress treated. Of these proteins, 23 and 28 from Vista and King, respectively, were identified.
Conclusions: Most of the identified proteins are involved in photosynthesis, metabolism, protein processing, or stress response, indicating that many different processes work together to establish a new cellular homeostasis in response to heat stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720558 | PMC |
http://dx.doi.org/10.1186/1477-5956-11-25 | DOI Listing |
Amplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.
View Article and Find Full Text PDFIn addition to regulating the actin cytoskeleton, Cofilin also senses and responds to environmental stress. Cofilin can promote cell survival or death depending on context. Yet, many aspects of Cofilin's role in survival need clarification.
View Article and Find Full Text PDFThe nuclear pore complex (NPC), a multisubunit complex located within the nuclear envelope, regulates RNA export and the import and export of proteins. Here we address the role of the NPC in driving thermal stress-induced 3D genome repositioning of ( ) genes in yeast. We found that two nuclear basket proteins, Mlp1 and Nup2, although dispensable for NPC integrity, are required for driving genes into coalesced chromatin clusters, consistent with their strong, heat shock-dependent recruitment to gene regulatory and coding regions.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Seed and Plant Improvement Institute Agricultural Research, Education and Extension Organization (AREEO) Dezful Iran.
High temperatures can impede the growth and development of soybean plants, resulting in decreased yield and seed quality. Heat-induced damage can be mitigated by adjusting sowing date and selecting genotypes that are suitable for cultivation in hot climates. A 2-year (2017-2018) field experiment was conducted at Safiabad Agricultural and Natural Resources Research and Education Center, employing a split-plot design with three replications.
View Article and Find Full Text PDFEcol Evol
January 2025
Minderoo Foundation Perth Western Australia Australia.
Coral reefs worldwide are threatened by increasing ocean temperatures because of the sensitivity of the coral-algal symbiosis to thermal stress. Reef-building corals form symbiotic relationships with dinoflagellates (family Symbiodiniaceae), including those species which acquire their initial symbiont complement predominately from their parents. Changes in the composition of symbiont communities, through the mechanisms of symbiont shuffling or switching, can modulate the host's thermal limits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!