Aging and neurogenesis in the adult forebrain: what we have learned and where we should go from here.

Eur J Neurosci

Department of Pathology and Cell Biology, Groupe de Recherche sur le Système Nerveux Central, Centre of Excellence in Neuroscience of the Université de Montréal, Université de Montréal, Montréal, Canada.

Published: June 2013

In the brains of adult vertebrates, including humans, neurogenesis occurs in restricted niches where it maintains cellular turnover and cognitive plasticity. In virtually all species, however, aging is associated with a significant decline in adult neurogenesis. Moreover, an acceleration of neurogenic defects is observed in models of Alzheimer's disease and other neurodegenerative diseases, suggesting an involvement in aging- and disease-associated cognitive deficits. To gain insights into when, how and why adult neurogenesis decreases in the aging brain, we critically reviewed the scientific literature on aging of the rodent subventricular zone, the neurogenic niche of the adult forebrain. Our analysis revealed that deficits in the neurogenic pathway are largely established by middle age, but that there remains striking ambiguity in the underlying mechanisms, especially at the level of stem and progenitor cells. We identify and discuss several challenging issues that have contributed to these key gaps in our current knowledge. In the future, addressing these issues should help untangle the interactions between neurogenesis, aging and aging-associated diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.12207DOI Listing

Publication Analysis

Top Keywords

adult forebrain
8
adult neurogenesis
8
aging
5
adult
5
aging neurogenesis
4
neurogenesis adult
4
forebrain learned
4
learned brains
4
brains adult
4
adult vertebrates
4

Similar Publications

People with amblyopia show deficits in global motion perception, especially at slow speeds. These observers are also known to have unstable fixation when viewing stationary fixation targets, relative to healthy controls. It is possible that poor fixation stability during motion viewing interferes with the fidelity of the input to motion-sensitive neurons in visual cortex.

View Article and Find Full Text PDF

Basal forebrain global functional connectivity is preserved in asymptomatic presenilin-1 E280A mutation carriers: Results from the Colombia cohort.

J Prev Alzheimers Dis

February 2025

Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Greifswald, Rostock, Germany.

Background: Imaging studies showed early atrophy of the cholinergic basal forebrain in prodromal sporadic Alzheimer's disease and reduced posterior basal forebrain functional connectivity in amyloid positive individuals with subjective cognitive decline. Similar investigations in familial cases of Alzheimer's disease are still lacking.

Objectives: To test whether presenilin-1 E280A mutation carriers have reduced basal forebrain functional connectivity and whether this is linked to amyloid pathology.

View Article and Find Full Text PDF

High definition transcranial direct current stimulation as an intervention for cognitive deficits in Alzheimer's dementia: A randomized controlled trial.

J Prev Alzheimers Dis

February 2025

Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.

Background: Recent disease-modifying treatments for Alzheimer's disease show promise to slow cognitive decline, but show no efficacy towards reducing symptoms already manifested.

Objectives: To investigate the efficacy of a novel noninvasive brain stimulation technique in modulating cognitive functioning in Alzheimer's dementia (AD).

Design: Pilot, randomized, double-blind, parallel, sham-controlled study SETTING: Clinical research site at UT Southwestern Medical Center PARTICIPANTS: Twenty-five participants with clinical diagnoses of AD were enrolled from cognition specialty clinics.

View Article and Find Full Text PDF

Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.

View Article and Find Full Text PDF

Background: Volume alterations in the parietal subregion have received less attention in Alzheimer's disease (AD), and their role in predicting conversion of mild cognitive impairment (MCI) to AD and cognitively normal (CN) to MCI remains unclear. In this study, we aimed to assess the volumetric variation of the parietal subregion at different cognitive stages in AD and to determine the role of parietal subregions in CN and MCI conversion.

Methods: We included 662 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 228 CN, 221 early MCI (EMCI), 112 late MCI (LMCI), and 101 AD participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!