Photophysical studies of europium coordination polymers based on a tetracarboxylate ligand.

Inorg Chem

State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.

Published: July 2013

Reaction of europium sulfate octahydrate with p-terphenyl-3,3″,5,5″-tetracarboxylic acid (H4ptptc) in a mixed solvent system has afforded three new coordination polymers formulated as {[Eu(ptptc)0.75(H2O)2]·0.5DMF·1.5H2O}n (1), {[Me2H2N]2 [Eu2(ptptc)2(H2O)(DMF)]·1.5DMF·7H2O}n (2), and {[Eu(Hptptc)(H2O)4]·0.5DMF·H2O}n (3). Complex 1 exhibits a three-dimensional (3D) metal-organic framework based on {Eu2(μ2-COO)2(COO)4}n chains, complex 2 shows a 3D metal-organic framework constructed by [Eu2(μ2-COO)2(COO)6](2-) dimetallic subunits, and complex 3 features a 2D layer architecture assembling to 3D framework through π···π interactions. All complexes exhibit the characteristic red luminescence of Eu(III) ion. The triplet state of ligand H4ptptc matches well with the emission level of Eu(III) ion, which allows the preparation of new optical materials with enhanced luminescence properties. The luminescence properties of these complexes are further studied in terms of their emission quantum yields, emission lifetimes, and the radiative/nonradiative rates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic400777cDOI Listing

Publication Analysis

Top Keywords

coordination polymers
8
metal-organic framework
8
euiii ion
8
luminescence properties
8
photophysical studies
4
studies europium
4
europium coordination
4
polymers based
4
based tetracarboxylate
4
tetracarboxylate ligand
4

Similar Publications

We present a strategy for enhancing Li conduction in block copolymer electrolytes by introducing trace amounts of Li salts into polystyrene--poly(ethylene oxide) (PS--PEO), wherein Li ions preferentially coordinate with the -OH end groups of the PEO chains, resulting in the formation of double primitive cubic (3̅) structures. Compared with TFSI anions in Li salts, smaller anions (PF and BF) could facilitate ion localization more effectively, expanding the salt concentration range for developing stable 3̅ structures. The 3̅ structures formed in PS--PEOs doped with LiBF at = 0.

View Article and Find Full Text PDF

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) with mechanical strength and reduced flammability may also enable next-generation Li batteries with higher energy densities. However, conventional SPEs have fundamental limitations in terms of Li conductivity. While an imidazole functionalized polymer (PMS-Im) has been previously shown to have ionic conductivity related to the imidazole-Li coordination, herein we demonstrate that quaternization of this polymer to form an analogous imidazolium functionalized polymer (PMS-Im) more efficiently solvates lithium salts and plasticizes the polymer.

View Article and Find Full Text PDF

Developing efficient path integral (PI) methods for atomistic simulations of vibrational spectra in heterogeneous condensed phases and interfaces has long been a challenging task. Here, we present the h-CMD method, short for hybrid centroid molecular dynamics, which combines the recently introduced fast quasi-CMD (f-QCMD) method with fast CMD (f-CMD). In this scheme, molecules that are believed to suffer more seriously from the curvature problem of CMD, e.

View Article and Find Full Text PDF

Polymer gels have been widely used in flexible electronics, soft machines and impact protection materials. Conventional gels usually suffer from the inherent conflict between stiffness and toughness, severely hampering their applications. This work proposes a facile yet versatile strategy to break through this trade-off via the synergistic effect of crystal-domain cross-linking and chelation cross-linking, without the need for specific structure design or adding other reinforcements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!