Surface-dependent mechanical stability of adsorbed human plasma fibronectin on Ti6Al4V: domain unfolding and stepwise unraveling of single compact molecules.

Langmuir

Department of Applied Physics and Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain.

Published: July 2013

In this study, the structure and mechanical stability of human plasma fibronectin (HFN), a major protein component of blood plasma, have been evaluated in detail upon adsorption on the nonirradiated and irradiated Ti6Al4V material through the use of atomic force microscopy. The results indicated that the material surface changes occurring after the irradiation process reduce the disulfide bonds that typically preclude the mechanical denaturation of individual HFN domains and interfere significantly with the intraionic interactions stabilizing the compact conformation of the adsorbed HFN molecules. In particular, upon adsorption on this material, the molecules adopt a more flexible conformation and become mechanically more compliant. Unexpected observations also indicated that, regardless the material surface, a single HFN molecule can be pulled into an extended conformation without the unfolding of its domains through a series of three unraveling steps. The forces involved in the unraveling process were found to be generally lower than the forces required to unfold the individual protein domains. This report is the first one to present the force displacement details associated to the straightening of a single compact protein at the molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la401776eDOI Listing

Publication Analysis

Top Keywords

mechanical stability
8
human plasma
8
plasma fibronectin
8
single compact
8
indicated material
8
material surface
8
surface-dependent mechanical
4
stability adsorbed
4
adsorbed human
4
fibronectin ti6al4v
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!